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ON THE STRUCTURE AND REPRESENTATIONS OF THE
INSERTION-ELIMINATION LIE ALGEBRA

MATTHEW SZCZESNY

ABSTRACT. We examine the structure of the insertion-elimination Lie alge-
bra on rooted trees introduced in [CK]. It possesses a triangular structure
g = np @ C.d @ n_, like the Heisenberg, Virasoro, and affine algebras. We
show in particular that it is simple, which in turn implies that it has no finite-
dimensional representations. We consider a category of lowest-weight repre-
sentations, and show that irreducible representations are uniquely determined
by a ”lowest weight” A € C. We show that each irreducible representation is a
quotient of a Verma-type object, which is generically irreducible.

1. INTRODUCTION

The insertion-elimination Lie algebra g was introduced in [CK] as a means
of encoding the combinatorics of inserting and collapsing subgraphs of Feynman
graphs, and the ways the two operations interact. A more abstract and universal
description of these two operations is given in terms of rooted trees, which encode
the hierarchy of subdivergences within a given Feynman graph, and it is this
description that we adopt in this paper. More precisely, g is generated by two
sets of operators {D; }, and {D; }, where t runs over the set of all rooted trees,
together with a grading operator d. In [CK] g was defined in terms of its action on
a natural representation C{T}, where the latter denotes the vector space spanned
by rooted trees. For s € C{T}, D, .s is a linear combination of the trees obtained
by attaching ¢ to s in all possible ways, whereas D, .s is a linear combination of
all the trees obtained by pruning the tree ¢ from branches of s. n, = {D;"} and
n_ = {D; } form two isomorphic nilpotent Lie subalgebras, and g has a triangular
structure

g=n, &Cddn_
as well as a natural Z—grading by the number of vertices of the tree t. The Hopf
algebra U(ny ) is dual to Kreimer’s Hopf algebra of rooted trees [K].

This note aims to estblish a few basic facts regarding the structure and repre-
sentation theory of g. We begin by showing that g is simple, which together with
its infinite-dimensionality implies that it has no non-trivial finite-dimensional rep-
resentations, and that any non-trivial representation is necessarily faithful. We
then proceed to develop a highest-weight theory for g along the lines of [K1I, [K2].
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In particular, we show that every irreducible highest-weight representation of g
is a quotient of a Verma-like module, and that these are generically irreducible.

One can define a larger, ”two-parameter” version of the insertion-elimination
Lie algebra g, where operators are labelled by pairs of trees Dy, ;, (roughly speak-
ing, in acting on C{T}, this operator replaces occurrences of t; by t3). In the spe-
cial case of ladder trees, g was studied in [M|, [KMIT] [KM2]. The finite-dimensional
representations of the nilpotent subalgebras ny as well as many other aspects of
the Hopf algebra U(ny) were studied in [E].

Acknowledgements: The author would like to thank Dirk Kreimer for many
illuminating conversations and explanations of renormalization as well as related
topics. This work was supported by NSF grant DMS-0401619.

2. THE INSERTION-ELIMINATION LIE ALGEBRA ON ROOTED TREES

In this section, we review the construction of the insertion-elimination Lie
algebra introduced in [CK], with some of the notational conventions introduced
in [M].

Let T denote the set of rooted trees. An element ¢ € T is a tree (finite, one-
dimensional contractible simplicial complex), with a distinguished vertex r(t),
called the root of t. Let V(t) and E(t) denote the set of vertices and edges of t,
and let

t] = #V(¢)
Let C{T} denote the vector space spanned by rooted trees. It is naturally graded,

1) c{r} = @ (T

TLEZE()

where C{T},, = span{t € T||t| = n}. C{T}, is spanned by the empty tree, which
we denote by 1. We have

C{T}y=<1> C{T}; =< o > C{T}y =< ¢ >

(CT3: o) °
{T}s = < /\>
|

[ J [
where <, > denotes span, and the root is the vertex at the top. If e € E(t), by
a cut along e we mean the operation of cutting e from ¢. This divides ¢ into two
components - R.(t) containing the root, and P.(¢), the remaining one. R.(t) and
P.(t) are naturally rooted trees, with r(R.(t)) = r(t) and r(P.(t)) = (endpoint
of e). Note that V(t) = V(R.(t)) UV (P.(t)).
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Let g denote the Lie algebra with generators D;", D; ,d, t € T, and relations

(22) Dt—t? D;; Z thUutl - Z DZUutz
vEV (t2) veV (t1)

(23) tl’ Z Dtluvtz Z DtZthl
veV (t1) veV (t2)

(2.4) [D;,. D= alti,tyt)Df + > Bt ta:t) Dy

teT teT

(2.5) [D;,Df]=d

(2.6) [d, D;] = —[¢|Dy

(2.7) [d, D] = [t|Dyf

where for s,t € T, and v € V(s) s U, t denotes the rooted tree obtained by
joining the root of ¢ to s at the vertex v via a single edge, and

° Oé(tt,tg;t) = #{6 € E(t2)|Re(t2) =1, Pe(tg) = tl}
o B(ti,ta;t) = #{e € E(t1)|Re(ts) = t, Pe(ty) = t2}

Thus, for example

+ D+t 1 pt + +
[Df,D*, |=D* , +2D*, - D7,

o o o ¢ e o’.\o
¢ o e
[D._, D_. ] =—-D" o — QD_. + D_.
o e o ¢ e e ¢
® o o

[D;, DT ]=2D7
@ [ J

o o ®

g acts naturally on C{T} as follows. If s € T, viewed as an element of C{T},
and t € T, then
Z sUyt

e€E(s),Pe(s)=t

d(s) = |sls
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3. STRUCTURE OF g

Let ny, and n_ be the Lie subalgebras s of g generated by D, and D; ,t € T.
We have a triangular decomposition
(3.1) g=n, dCddn_
The relations 2.5, 2.6 and 2.7 imply that for every ¢t € T
o' =<D;,D;,d>

forms a Lie subalgebra isomorphic to sl,. We have that g, N g, = C.d if s # t.
Assigning degree |t| to D}, —|t| to D;, and 0 to d equips g with a Z-grading.

s=Da
nez
g possesses an involution ¢, with

D) = Dy uDy) = Df u(d) = —d
Thus ¢ is a gradation-reversing Lie algebra automorphism exchanging n, and n_.

Theorem 3.1. g is a simple Lie algebra

Proof. Suppose that Z C g is a proper Lie ideal. f z € Z, let x = >, z;, z; € g;
be its decomposition into homogenous components. We have

[d, z] = Z n,

which implies that z,, € I for every n (because the Vandermonde determinant is
invertible) i.e. Z = @,ez(Z Ng,). Suppose now that z, € g,, n > 0. We can
write x,, as a linear combination of n—vertex rooted trees

(3.2) To= ) oyt

teT,
We proceed to show that D} € Z, where e is the rooted tree with one vertex.
Let S(z,) C T, be the subset of n-vertex trees occurring with a non-zero «; in
B2l Given a rooted tree ¢, let St(t) denote the set of rooted trees obtained by
removing all the edges emanating from the root. Let

St(z.) = | J St(s)

s€S(zn)

and let £ € St(z,) be of maximal degree. It is easy to see that [D;,x,] is a
non-zero element of g,_¢. Starting with z,, € ny, z, # 0, and repeating this
process if necessary, we eventually obtain a non-zero element of g; =< D} >.
Now, [D,, D] = d, and since [d, g] = g], this implies Z = g. We have thus shown
that if Z is proper, then

INnye =0
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Applying ¢ shows that Z Nn_0 as well, and it is clear that Z N C.d = 0.
O

We can now use this result to deduce a couple of facts about the representation
theory of g.

Corollary 3.1. If V is a non-trivial representation of g, then V' is faithful.
Corollary 3.2. g has no non-trivial finite-dimensional representations.

The latter can also be easily deduced by analyzing the action of the sly subal-
gebras g’ as follows. Suppose that V' is a finite-dimensional representation of g.
To show that V' is trivial, it suffices to show that it restricts to a trivial represen-
tation of g’ for every ¢t € T. This in turn, will follow if we can show that for a
single tree t € T, g' acts trivially, because this implies that d acts trivially, and
C.d C g plays the role of the Cartan subalgebra. Let

V=P v
i=1--k
be a decomposition of V' into d-eigenspaces - i.e. if v € Vj,, then d.v; = d;v. Since
V' is finite-dimensional, the set {d;} is bounded, and so lies in a disc of radius R
in C. If v € V5, then [d, D{] = |t|D; implies that D;".v € V4. Choosing a
t € T such that |t| > 2R shows that D} .v = 0 for every v € V.

3.1. Lowest-weight representations of g. We begin by examining the ”defin-
ing” representation C{T} of g introduced in section 2. Its decomposition into
d—eigenspaces is given by 21l Given a representation V' of g on which d is diag-
onalizable, with finite-dimensional eigenspaces, and writing

V:@%
)

for this decomposition, we define the emphcharacter of V', char(V,q) to be the
formal series

char(V,q) = Z dim(Vs)q®
5

The case V = C{T}, where dim(V},) is the number of rooted trees on n vertices,
suggests that representations of g may contain interesting combinatorial infor-
mation. The triangular structure B.1] of g suggests that a theory of highest— or
lowest—weight representations may be appropriate.

Definition 3.1. We say that a representation V of g is lowest—weight if the
following properties hold
(1) V = @Vj is a direct sum of finite-dimensional eigenspaces for d.

(2) The eigenvalues § are bounded in the sense that there exists L € R such
that Re(d) > L.
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We call the 0 the weights of the representation, and category of such represen-
tations O. If V € O, we say v € Vs is a lowest-weight vector if n_v = 0. Since
D, decreases the weight of a vector by |t|, and the weights all lie in a half-plane,
it is clear that every V' € O contains a lowest-weight vector.

Recall that a representation V' of g is indecomposable if it cannot be written as
V = Vi @V, for two non-zero representations. Let U(h) denote the universal
enveloping algebra of a Lie algebra b.

Lemma 3.1. If v € V) is a lowest-weight vector, then U(n,y).v is an indecom-
posable representation of g

Proof. U(g).v is clearly the smallest sub-representation of V' containing v. The
decomposition [3.1] together with the PBW theorem implies that
U(g) = U(ny) @ Cld] @ U(n-)
Because v is a lowest-weight vector, Cld] ® U(n_).v = C.v. It follows that
U(g).v = U(ny).v. That the latter is indecomposable follows from the fact that
in U(ny).v, the weight space corresponding to A is one-dimensional, and so if
Umny)w=V,®V,, thenv € V) or v € Vs. O
Observe that

U(n+>.U = @(U(n+>.v))\+k, k c ZZO
where (U(ny).v)a4x is spanned by monomials of the form
(3.3) Df D - Dfw

The category O contains Verma-like modules. For A € C, let C, denote the
one-dimensional representation of C.d & n_ on which n_ acts trivially, and d acts
by multiplication by A.

Definition 3.2. The g—module

WA =Ug) & C,
Cld®U (n_)

will be called the Verma module of lowest weight .
Choosing an ordering on trees yields a PBW basis for n ., and thus also a basis
of the form B3] for W (\).

Given a representation V € O, and a lowest weight vector v € V), we obtain a
map of representations

(3.4) W) —V
11—

Lemma 3.2. IfV € O is an irreducible representation, then V is the quotient of
a Verma module.
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Proof. Since V€ O, V possesses a lowest-weight vector v € V) for some A € C.
Since V' is irreducible, V' = U(g).v = U(ny).v. The latter is a quotient of
W(N). O

We have
Char(W(N) =¢* Y dim(C{T},)q"

TLEZEO

where P(n) is the number of primitive elements of degree n in H.

3.2. Irreducibility of W(\). It is a natural question whether W(\) is irre-
ducible. In this section we prove the following result:

Theorem 3.2. For \ outside a countable subset of C containing 0, W(\) is
irreducible.

Proof. Let v # 0 be a basis for W/(A),. W () contains a proper sub-representation
if and only if contains a lowest-weight vector w such that w ¢ C.v. In W(0),
Df.w e W(0), is a lowest-weight vector, since

D;Dfvw=DID;v+dv=0

and D, .v =0 for all t € T with |[t| > 2 by degree considerations. It follows that
W(0) is not irreducible.
If I = (ty, - ,t) is a k—tuple of trees such that

t Sty = 2t

in the chosen order, let D} .v denote the vector

(3.5) Dj ---Df v € W())
w € W(A)apn is a lowest-weight vector if and only if
(3.6) Diaw=0

for all ¢ such that |¢| < n. Writing w in the basis

w = arDf v
=n

the conditions translate into a system of equations for the coefficients «;. For
example, if w € W(A)yy2, then

w=aD} v+ ;DD v
¢
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and conditions Dj.v =0, D .w = 0 translate into
°

)\Oél + )\Oég =0

ay + (2)\+ 1)0&2 =0

The determinant of the corresponding matrix is 2\, and so for A # 0, there is no
lowest-weight vector w € W (A)a;2. For a general n, the system can be written
in the form

(A+ AB)[ay] =0
where A and B are matrices whose entries are non-negative integers. Let

fa(A) =dim(Ker(A+ A\B))

Then for every r € N
Sny =A{A € C[fn(N) = 1}

if proper, is a finite subset of C, since the condition is equivalent to the vanishing
a finite collection of sub-determinants, each of which is a polynomial in A. The
set of A € C for which W () is irreducible is therefore

U{C\Sn1}

neN

The theorem will follow if S, ; is proper for each n € N. This follows from the

following Lemma.
OJ

Lemma 3.3. Z(1) is irreducible.

Proof. We begin by examining the representation C{T}. The degree 0 subspace
C.1 is a trivial representation of g. Let M denote the quotient C{T}/C.1. It is
easily seen that the exact sequence

0—C—C{T}— M —0

is non-split. M has highest weight 1, and the subspace M; can be identified with
the span of the tree on one vertex o. By the universal property of Verma modules,
3.4l we have a map

(3.7) W(1) — M

sending the lowest-weight vector of W (1) to e. Now, W(1),, is spanned by all
vectors B.0 such that [t;|+- - - |tx| = n—1, and so can be identified with the set of
forests on n — 1 vertices, while M,, can be identified with C{T},,. The operation
of adding a root to a forest on n — 1 vertices to produce a rooted tree with n
vertices yields an isomorphism W (1),, = M,,. Thus, if the map B7is a surjection,
it is an isomorphism. This in turn, follows from the fact that M is irreducible.
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It suffices to show that M, contains no lowest-weight vectors for n > 1. This
follows from an argument similar to the one used to prove 3.1l Let w € M,,, and
write

w :Oéltl —|—"'Oéktk

where |t;] = n and we may assume that «; # 0. In the notation of B let
¢ € St(w) be of maximal degree. Then
D¢w #0
Thus, M is irreducible, and hence isomorphic to W (1) by the map B O
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