ON THE STRUCTURE AND REPRESENTATIONS OF THE INSERTION-ELIMINATION LIE ALGEBRA

MATTHEW SZCZESNY

Abstract

We examine the structure of the insertion-elimination Lie algebra on rooted trees introduced in [K]. It possesses a triangular structure $\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathbb{C} . d \oplus \mathfrak{n}_{-}$, like the Heisenberg, Virasoro, and affine algebras. We show in particular that it is simple, which in turn implies that it has no finitedimensional representations. We consider a category of lowest-weight representations, and show that irreducible representations are uniquely determined by a "lowest weight" $\lambda \in \mathbb{C}$. We show that each irreducible representation is a quotient of a Verma-type object, which is generically irreducible.

1. Introduction

The insertion-elimination Lie algebra \mathfrak{g} was introduced in [CK] as a means of encoding the combinatorics of inserting and collapsing subgraphs of Feynman graphs, and the ways the two operations interact. A more abstract and universal description of these two operations is given in terms of rooted trees, which encode the hierarchy of subdivergences within a given Feynman graph, and it is this description that we adopt in this paper. More precisely, \mathfrak{g} is generated by two sets of operators $\left\{D_{t}^{+}\right\}$, and $\left\{D_{t}^{-}\right\}$, where t runs over the set of all rooted trees, together with a grading operator d. In [CK] \mathfrak{g} was defined in terms of its action on a natural representation $\mathbb{C}\{\mathbb{T}\}$, where the latter denotes the vector space spanned by rooted trees. For $s \in \mathbb{C}\{\mathbb{T}\}, D_{t}^{+} . s$ is a linear combination of the trees obtained by attaching t to s in all possible ways, whereas $D_{t}^{-} . s$ is a linear combination of all the trees obtained by pruning the tree t from branches of $s . \mathfrak{n}_{+}=\left\{D_{t}^{+}\right\}$and $\mathfrak{n}_{-}=\left\{D_{t}^{-}\right\}$form two isomorphic nilpotent Lie subalgebras, and \mathfrak{g} has a triangular structure

$$
\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathbb{C} . d \oplus \mathfrak{n}_{-}
$$

as well as a natural \mathbb{Z}-grading by the number of vertices of the tree t. The Hopf algebra $U\left(\mathfrak{n}_{ \pm}\right)$is dual to Kreimer's Hopf algebra of rooted trees [K].

This note aims to estblish a few basic facts regarding the structure and representation theory of \mathfrak{g}. We begin by showing that \mathfrak{g} is simple, which together with its infinite-dimensionality implies that it has no non-trivial finite-dimensional representations, and that any non-trivial representation is necessarily faithful. We then proceed to develop a highest-weight theory for \mathfrak{g} along the lines of [K1, K2].

In particular, we show that every irreducible highest-weight representation of \mathfrak{g} is a quotient of a Verma-like module, and that these are generically irreducible.

One can define a larger, "two-parameter" version of the insertion-elimination Lie algebra $\widetilde{\mathfrak{g}}$, where operators are labelled by pairs of trees $D_{t_{1}, t_{2}}$ (roughly speaking, in acting on $\mathbb{C}\{\mathbb{T}\}$, this operator replaces occurrences of t_{1} by t_{2}). In the special case of ladder trees, $\widetilde{\mathfrak{g}}$ was studied in [M, KM1, KM2]. The finite-dimensional representations of the nilpotent subalgebras $\mathfrak{n}_{ \pm}$as well as many other aspects of the Hopf algebra $U\left(\mathfrak{n}_{ \pm}\right)$were studied in [F].

Acknowledgements: The author would like to thank Dirk Kreimer for many illuminating conversations and explanations of renormalization as well as related topics. This work was supported by NSF grant DMS-0401619.

2. The insertion-Elimination Lie algebra on rooted trees

In this section, we review the construction of the insertion-elimination Lie algebra introduced in [CK], with some of the notational conventions introduced in (M].

Let \mathbb{T} denote the set of rooted trees. An element $t \in \mathbb{T}$ is a tree (finite, onedimensional contractible simplicial complex), with a distinguished vertex $r(t)$, called the root of t. Let $V(t)$ and $E(t)$ denote the set of vertices and edges of t, and let

$$
|t|=\# V(t)
$$

Let $\mathbb{C}\{\mathbb{T}\}$ denote the vector space spanned by rooted trees. It is naturally graded,

$$
\begin{equation*}
\mathbb{C}\{\mathbb{T}\}=\bigoplus_{n \in \mathbb{Z}_{\geq 0}} \mathbb{C}\{\mathbb{T}\}_{n} \tag{2.1}
\end{equation*}
$$

where $\mathbb{C}\{\mathbb{T}\}_{n}=\operatorname{span}\{t \in \mathbb{T}| | t \mid=n\} . \mathbb{C}\{\mathbb{T}\}_{0}$ is spanned by the empty tree, which we denote by $\mathbf{1}$. We have

$$
\mathbb{C}\{\mathbb{T}\}_{0}=<1>\quad \mathbb{C}\{\mathbb{T}\}_{1}=<\bullet>\quad \mathbb{C}\{\mathbb{T}\}_{2}=<
$$

where $<,>$ denotes span, and the root is the vertex at the top. If $e \in E(t)$, by a cut along e we mean the operation of cutting e from t. This divides t into two components - $R_{c}(t)$ containing the root, and $P_{e}(t)$, the remaining one. $R_{e}(t)$ and $P_{e}(t)$ are naturally rooted trees, with $r\left(R_{c}(t)\right)=r(t)$ and $r\left(P_{e}(t)\right)=$ (endpoint of e). Note that $V(t)=V\left(R_{e}(t)\right) \cup V\left(P_{e}(t)\right)$.

Let \mathfrak{g} denote the Lie algebra with generators $D_{t}^{+}, D_{t}^{-}, d, t \in \mathbb{T}$, and relations

$$
\begin{gather*}
{\left[D_{t_{1}}^{+}, D_{t_{2}}^{+}\right]=\sum_{v \in V\left(t_{2}\right)} D_{t_{2} \cup_{v} t_{1}}^{+}-\sum_{v \in V\left(t_{1}\right)} D_{t_{1} \cup_{v} t_{2}}^{+}} \tag{2.2}\\
{\left[D_{t_{1}}^{-}, D_{t_{2}}^{-}\right]=\sum_{v \in V\left(t_{1}\right)} D_{t_{1} \cup_{v} t_{2}}^{-}-\sum_{v \in V\left(t_{2}\right)} D_{t_{2} \cup_{v} t_{1}}^{-}} \tag{2.3}\\
{\left[D_{t_{1}}^{-}, D_{t_{2}}^{+}\right]=\sum_{t \in \mathbb{T}} \alpha\left(t_{1}, t_{2} ; t\right) D_{t}^{+}+\sum_{t \in T} \beta\left(t_{1}, t_{2} ; t\right) D_{t}^{-}} \tag{2.4}\\
{\left[D_{t}^{-}, D_{t}^{+}\right]=d} \tag{2.5}\\
{\left[d, D_{t}^{-}\right]=-|t| D_{t}^{-}} \tag{2.6}\\
{\left[d, D_{t}^{+}\right]=|t| D_{t}^{+}} \tag{2.7}
\end{gather*}
$$

where for $s, t \in \mathbb{T}$, and $v \in V(s) s \cup_{v} t$ denotes the rooted tree obtained by joining the root of t to s at the vertex v via a single edge, and

- $\alpha\left(t_{t}, t_{2} ; t\right)=\#\left\{e \in E\left(t_{2}\right) \mid R_{e}\left(t_{2}\right)=t, P_{e}\left(t_{2}\right)=t_{1}\right\}$
- $\beta\left(t_{1}, t_{2} ; t\right)=\#\left\{e \in E\left(t_{1}\right) \mid R_{e}\left(t_{1}\right)=t, P_{e}\left(t_{1}\right)=t_{2}\right\}$

Thus, for example

\mathfrak{g} acts naturally on $\mathbb{C}\{\mathbb{T}\}$ as follows. If $s \in \mathbb{T}$, viewed as an element of $\mathbb{C}\{\mathbb{T}\}$, and $t \in \mathbb{T}$, then

$$
\begin{gathered}
D_{t}^{+}(s)=\sum_{v \in V(s)} s \cup_{v} t \\
D_{t}^{-}(s)=\sum_{e \in E(s), P_{e}(s)=t} R_{e}(s) \\
d(s)=|s| s
\end{gathered}
$$

3. Structure of \mathfrak{g}

Let \mathfrak{n}_{+}and \mathfrak{n}_{-}be the Lie subalgebras s of \mathfrak{g} generated by D_{t}^{+}and $D_{t}^{-}, t \in \mathbb{T}$. We have a triangular decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathbb{C} . d \oplus \mathfrak{n}_{-} \tag{3.1}
\end{equation*}
$$

The relations 2.5, 2.6, and 2.7 imply that for every $t \in \mathbb{T}$

$$
\mathfrak{g}^{t}=<D_{t}^{+}, D_{t}^{-}, d>
$$

forms a Lie subalgebra isomorphic to $\mathfrak{s l}_{2}$. We have that $\mathfrak{g}_{t} \cap \mathfrak{g}_{s}=\mathbb{C} . d$ if $s \neq t$. Assigning degree $|t|$ to $D_{t}^{+},-|t|$ to D_{t}^{-}, and 0 to d equips \mathfrak{g} with a \mathbb{Z}-grading.

$$
\mathfrak{g}=\bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_{n}
$$

\mathfrak{g} possesses an involution ι, with

$$
\iota\left(D_{t}^{+}\right)=D_{t}^{-} \quad \iota\left(D_{t}^{-}\right)=D_{t}^{+} \quad \iota(d)=-d
$$

Thus ι is a gradation-reversing Lie algebra automorphism exchanging \mathfrak{n}_{+}and \mathfrak{n}_{-}.
Theorem 3.1. \mathfrak{g} is a simple Lie algebra
Proof. Suppose that $\mathcal{I} \subset \mathfrak{g}$ is a proper Lie ideal. If $x \in \mathcal{I}$, let $x=\sum_{i} x_{i}, \quad x_{i} \in \mathfrak{g}_{i}$ be its decomposition into homogenous components. We have

$$
[d, x]=\sum_{n} n x_{n}
$$

which implies that $x_{n} \in I$ for every n (because the Vandermonde determinant is invertible) i.e. $\mathcal{I}=\oplus_{n \in \mathbb{Z}}\left(\mathcal{I} \cap \mathfrak{g}_{n}\right)$. Suppose now that $x_{n} \in \mathfrak{g}_{n}, n>0$. We can write x_{n} as a linear combination of n-vertex rooted trees

$$
\begin{equation*}
x_{n}=\sum_{t \in \mathbb{T}_{n}} \alpha_{t} \cdot t \tag{3.2}
\end{equation*}
$$

We proceed to show that $D_{\bullet}^{+} \in \mathcal{I}$, where \bullet is the rooted tree with one vertex. Let $S\left(x_{n}\right) \subset \mathbb{T}_{n}$ be the subset of n-vertex trees occurring with a non-zero α_{t} in 3.2. Given a rooted tree t, let $S t(t)$ denote the set of rooted trees obtained by removing all the edges emanating from the root. Let

$$
S t\left(x_{n}\right)=\bigcup_{s \in S\left(x_{n}\right)} S t(s)
$$

and let $\xi \in S t\left(x_{n}\right)$ be of maximal degree. It is easy to see that $\left[D_{\xi}^{-}, x_{n}\right]$ is a non-zero element of $\mathfrak{g}_{n-|\xi|}$. Starting with $x_{n} \in \mathfrak{n}_{+}, x_{n} \neq 0$, and repeating this process if necessary, we eventually obtain a non-zero element of $\mathfrak{g}_{1}=<D_{\bullet}^{+}>$. Now, $\left[D_{\bullet}^{-}, D_{\bullet}^{+}\right]=d$, and since $\left.[d, \mathfrak{g}]=\mathfrak{g}\right]$, this implies $\mathcal{I}=\mathfrak{g}$. We have thus shown that if \mathcal{I} is proper, then

$$
\mathcal{I} \cap \mathfrak{n}_{+}=0
$$

Applying ι shows that $\mathcal{I} \cap \mathfrak{n}_{-} 0$ as well, and it is clear that $\mathcal{I} \cap \mathbb{C} . d=0$.

We can now use this result to deduce a couple of facts about the representation theory of \mathfrak{g}.

Corollary 3.1. If V is a non-trivial representation of \mathfrak{g}, then V is faithful.
Corollary 3.2. \mathfrak{g} has no non-trivial finite-dimensional representations.
The latter can also be easily deduced by analyzing the action of the $\mathfrak{s l}_{2}$ subalgebras \mathfrak{g}^{t} as follows. Suppose that V is a finite-dimensional representation of \mathfrak{g}. To show that V is trivial, it suffices to show that it restricts to a trivial representation of \mathfrak{g}^{t} for every $t \in \mathbb{T}$. This in turn, will follow if we can show that for a single tree $t \in \mathbb{T}, \mathfrak{g}^{t}$ acts trivially, because this implies that d acts trivially, and $\mathbb{C} . d \subset \mathfrak{g}^{t}$ plays the role of the Cartan subalgebra. Let

$$
V=\bigoplus_{i=1 \cdots k} V_{\delta_{i}}
$$

be a decomposition of V into d-eigenspaces - i.e. if $v \in V_{\delta_{i}}$, then $d . v_{i}=\delta_{i} v$. Since V is finite-dimensional, the set $\left\{\delta_{i}\right\}$ is bounded, and so lies in a disc of radius R in \mathbb{C}. If $v \in V_{\delta_{i}}$ then $\left[d, D_{t}^{+}\right]=|t| D_{t}^{+}$implies that $D_{t}^{+} . v \in V_{\delta_{i}+|t|}$. Choosing a $t \in \mathbb{T}$ such that $|t|>2 R$ shows that $D_{t}^{+} \cdot v=0$ for every $v \in V$.
3.1. Lowest-weight representations of \mathfrak{g}. We begin by examining the "defining" representation $\mathbb{C}\{\mathbb{T}\}$ of \mathfrak{g} introduced in section 2. Its decomposition into d-eigenspaces is given by 2.1, Given a representation V of \mathfrak{g} on which d is diagonalizable, with finite-dimensional eigenspaces, and writing

$$
V=\bigoplus_{\delta} V_{\delta}
$$

for this decomposition, we define the emphcharacter of $V, \operatorname{char}(V, q)$ to be the formal series

$$
\operatorname{char}(V, q)=\sum_{\delta} \operatorname{dim}\left(V_{\delta}\right) q^{\delta}
$$

The case $V=\mathbb{C}\{\mathbb{T}\}$, where $\operatorname{dim}\left(V_{n}\right)$ is the number of rooted trees on n vertices, suggests that representations of \mathfrak{g} may contain interesting combinatorial information. The triangular structure 3.1 of \mathfrak{g} suggests that a theory of highest- or lowest-weight representations may be appropriate.

Definition 3.1. We say that a representation V of \mathfrak{g} is lowest-weight if the following properties hold
(1) $V=\oplus V_{\delta}$ is a direct sum of finite-dimensional eigenspaces for d.
(2) The eigenvalues δ are bounded in the sense that there exists $L \in \mathbb{R}$ such that $\operatorname{Re}(\delta) \geq L$.

We call the δ the weights of the representation, and category of such representations \mathcal{O}. If $V \in \mathcal{O}$, we say $v \in V_{\delta}$ is a lowest-weight vector if $\mathfrak{n}_{-} v=0$. Since D_{t}^{-}decreases the weight of a vector by $|t|$, and the weights all lie in a half-plane, it is clear that every $V \in \mathcal{O}$ contains a lowest-weight vector.
Recall that a representation V of \mathfrak{g} is indecomposable if it cannot be written as $V=V_{1} \oplus V_{2}$ for two non-zero representations. Let $U(\mathfrak{h})$ denote the universal enveloping algebra of a Lie algebra \mathfrak{h}.

Lemma 3.1. If $v \in V_{\lambda}$ is a lowest-weight vector, then $U\left(\mathfrak{n}_{+}\right) . v$ is an indecomposable representation of \mathfrak{g}
Proof. $U(\mathfrak{g}) . v$ is clearly the smallest sub-representation of V containing v. The decomposition 3.1 together with the PBW theorem implies that

$$
U(\mathfrak{g})=U\left(\mathfrak{n}_{+}\right) \otimes \mathbb{C}[d] \otimes U\left(\mathfrak{n}_{-}\right)
$$

Because v is a lowest-weight vector, $\mathbb{C}[d] \otimes U\left(\mathfrak{n}_{-}\right) \cdot v=\mathbb{C} . v$. It follows that $U(\mathfrak{g}) \cdot v=U\left(\mathfrak{n}_{+}\right) \cdot v$. That the latter is indecomposable follows from the fact that in $U\left(\mathfrak{n}_{+}\right) \cdot v$, the weight space corresponding to λ is one-dimensional, and so if $U\left(\mathfrak{n}_{+}\right) \cdot v=V_{1} \oplus V_{2}$, then $v \in V_{1}$ or $v \in V_{2}$.

Observe that

$$
U\left(\mathfrak{n}_{+}\right) \cdot v=\oplus\left(U\left(\mathfrak{n}_{+}\right) \cdot v\right)_{\lambda+k}, \quad k \in \mathbb{Z}_{\geq 0}
$$

where $\left(U\left(\mathfrak{n}_{+}\right) \cdot v\right)_{\lambda+k}$ is spanned by monomials of the form

$$
\begin{equation*}
D_{t_{1}}^{+} D_{t_{2}}^{+} \cdots D_{t_{i}}^{+} \cdot v \tag{3.3}
\end{equation*}
$$

with $\left|t_{1}\right|+\cdots\left|t_{i}\right|=k$.
The category \mathcal{O} contains Verma-like modules. For $\lambda \in \mathbb{C}$, let \mathbb{C}_{λ} denote the one-dimensional representation of $\mathbb{C} . d \oplus \mathfrak{n}_{-}$on which \mathfrak{n}_{-}acts trivially, and d acts by multiplication by λ.

Definition 3.2. The \mathfrak{g}-module

$$
W(\lambda)=U(\mathfrak{g}) \underset{\mathbb{C}[d] \otimes U\left(\mathfrak{n}_{-}\right)}{\otimes} \mathbb{C}_{\lambda}
$$

will be called the Verma module of lowest weight λ.
Choosing an ordering on trees yields a PBW basis for \mathfrak{n}_{+}, and thus also a basis of the form 3.3 for $W(\lambda)$.

Given a representation $V \in \mathcal{O}$, and a lowest weight vector $v \in V_{\lambda}$, we obtain a map of representations

$$
\begin{gather*}
W(\lambda) \mapsto V \tag{3.4}\\
\mathbf{1} \mapsto v
\end{gather*}
$$

Lemma 3.2. If $V \in \mathcal{O}$ is an irreducible representation, then V is the quotient of a Verma module.

Proof. Since $V \in \mathcal{O}, V$ possesses a lowest-weight vector $v \in V_{\lambda}$ for some $\lambda \in \mathbb{C}$. Since V is irreducible, $V=U(\mathfrak{g}) \cdot v=U\left(\mathfrak{n}_{+}\right) \cdot v$. The latter is a quotient of $W(\lambda)$.

We have

$$
\begin{aligned}
\operatorname{Char}(W(\lambda)) & =q^{\lambda} \sum_{n \in \mathbb{Z}_{\geq 0}} \operatorname{dim}\left(\mathbb{C}\{\mathbb{T}\}_{n}\right) q^{n} \\
& =q^{\lambda} \prod_{n \in \mathbb{Z} \geq 0} \frac{1}{\left(1-q^{n}\right)^{P(n)}}
\end{aligned}
$$

where $P(n)$ is the number of primitive elements of degree n in \mathcal{H}_{K}.
3.2. Irreducibility of $W(\lambda)$. It is a natural question whether $W(\lambda)$ is irreducible. In this section we prove the following result:

Theorem 3.2. For λ outside a countable subset of \mathbb{C} containing 0 , $W(\lambda)$ is irreducible.

Proof. Let $v \neq 0$ be a basis for $W(\lambda)_{\lambda} . W(\lambda)$ contains a proper sub-representation if and only if contains a lowest-weight vector w such that $w \notin \mathbb{C} . v$. In $W(0)$, $D_{\bullet}^{+} . v \in W(0)_{1}$ is a lowest-weight vector, since

$$
D_{\bullet}^{-} D_{\bullet}^{+} \cdot v=D_{\bullet}^{+} D_{\bullet}^{-} \cdot v+d . v=0
$$

and $D_{t}^{-} \cdot v=0$ for all $t \in \mathbb{T}$ with $|t| \geq 2$ by degree considerations. It follows that $W(0)$ is not irreducible.

If $I=\left(t_{1}, \cdots, t_{k}\right)$ is a k-tuple of trees such that

$$
t_{1} \preceq t_{2} \preceq \cdots \preceq t_{k}
$$

in the chosen order, let $D_{I}^{+} \cdot v$ denote the vector

$$
\begin{equation*}
D_{t_{k}}^{+} \cdots D_{t_{1}}^{+} \cdot v \in W(\lambda) \tag{3.5}
\end{equation*}
$$

$w \in W(\lambda)_{\lambda+n}$ is a lowest-weight vector if and only if

$$
\begin{equation*}
D_{t}^{-} \cdot w=0 \tag{3.6}
\end{equation*}
$$

for all t such that $|t| \leq n$. Writing w in the basis 3.5

$$
w=\sum_{|I|=n} \alpha_{I} D_{I}^{+} \cdot v
$$

the conditions 3.6 translate into a system of equations for the coefficients α_{I}. For example, if $w \in W(\lambda)_{\lambda+2}$, then

$$
w=\alpha_{1} D_{\bullet}^{+} \cdot v+\alpha_{2} D_{\bullet}^{+} D_{\bullet}^{+} \cdot v
$$

and conditions $D_{\boldsymbol{\bullet}}^{-} \cdot v=0, D_{\bullet}^{-} \cdot w=0$ translate into

$$
\begin{aligned}
\lambda \alpha_{1}+\lambda \alpha_{2} & =0 \\
\alpha_{1}+(2 \lambda+1) \alpha_{2} & =0
\end{aligned}
$$

The determinant of the corresponding matrix is $2 \lambda^{2}$, and so for $\lambda \neq 0$, there is no lowest-weight vector $w \in W(\lambda)_{\lambda+2}$. For a general n, the system can be written in the form

$$
(A+\lambda B)\left[\alpha_{I}\right]=0
$$

where A and B are matrices whose entries are non-negative integers. Let

$$
f_{n}(\lambda)=\operatorname{dim}(\operatorname{Ker}(A+\lambda B))
$$

Then for every $r \in \mathbb{N}$

$$
S_{n, r}=\left\{\lambda \in \mathbb{C} \mid f_{n}(\lambda) \geq r\right\}
$$

if proper, is a finite subset of \mathbb{C}, since the condition is equivalent to the vanishing a finite collection of sub-determinants, each of which is a polynomial in λ. The set of $\lambda \in \mathbb{C}$ for which $W(\lambda)$ is irreducible is therefore

$$
\bigcup_{n \in \mathbb{N}}\left\{\mathbb{C} \backslash S_{n, 1}\right\}
$$

The theorem will follow if $S_{n, 1}$ is proper for each $n \in \mathbb{N}$. This follows from the following Lemma.

Lemma 3.3. $Z(1)$ is irreducible.
Proof. We begin by examining the representation $\mathbb{C}\{\mathbb{T}\}$. The degree 0 subspace $\mathbb{C} .1$ is a trivial representation of \mathfrak{g}. Let M denote the quotient $\mathbb{C}\{\mathbb{T}\} / \mathbb{C} .1$. It is easily seen that the exact sequence

$$
0 \mapsto \mathbb{C} \mapsto \mathbb{C}\{\mathbb{T}\} \mapsto M \mapsto 0
$$

is non-split. M has highest weight 1 , and the subspace M_{1} can be identified with the span of the tree on one vertex \bullet. By the universal property of Verma modules, 3.4 we have a map

$$
\begin{equation*}
W(1) \mapsto M \tag{3.7}
\end{equation*}
$$

sending the lowest-weight vector of $W(1)$ to • Now, $W(1)_{n}$ is spanned by all vectors 3.5 such that $\left|t_{1}\right|+\cdots\left|t_{k}\right|=n-1$, and so can be identified with the set of forests on $n-1$ vertices, while M_{n} can be identified with $\mathbb{C}\{\mathbb{T}\}_{n}$. The operation of adding a root to a forest on $n-1$ vertices to produce a rooted tree with n vertices yields an isomorphism $W(1)_{n} \cong M_{n}$. Thus, if the map 3.7 is a surjection, it is an isomorphism. This in turn, follows from the fact that M is irreducible.

It suffices to show that M_{n} contains no lowest-weight vectors for $n>1$. This follows from an argument similar to the one used to prove 3.1. Let $w \in M_{n}$, and write

$$
w=\alpha_{1} t_{1}+\cdots \alpha_{k} t_{k}
$$

where $\left|t_{i}\right|=n$ and we may assume that $\alpha_{i} \neq 0$. In the notation of 3.1, let $\xi \in S t(w)$ be of maximal degree. Then

$$
D_{\xi}^{-} \cdot w \neq 0
$$

Thus, M is irreducible, and hence isomorphic to $W(1)$ by the map 3.7 ,

References

[CK] Connes, A.; Kreimer, D. Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincar 3 (2002), no. 3, 411-433.
[F] Foissy, L. Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), 89-120.
[K1] Kac, V. G. Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, 1988.
[K2] Kac, V. G. Infinite Dimensional Lie Algebras, Cambridge University Press, 1994.
[K] Kreimer, D. On the Hopf algebra structure of perturbative quantum field theory. Adv. Theor. Math. Phys. 2 (1998), 303-334.
[KM1] Kreimer, D.; Mencattini, I. Insertion and Elimination Lie algebra: The Ladder Case, Lett. Math. Phys. 672004 no. 1.
[KM2] Kreimer, D.; Mencattini, I. The Structure of the Ladder Insertion-Elimination Lie algebra, Comm. Math. Phys. 259 (2005).
[M] Mencattini, I. Thesis, Boston University 2005.
Department of Mathematics Boston University, Boston, MA 02215
E-mail address: szczesny@math.bu.edu

