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4 ORBIFOLD CONFORMAL BLOCKS AND THE STACK OF

POINTED G-COVERS

MATTHEW SZCZESNY

Abstract. Starting with a vertex algebra V , a finite group G of automorphisms of
V , and a suitable collection of twisted V –modules, we construct (twisted) D–modules
on the stack of pointed G–covers, introduced by Jarvis, Kaufmann, and Kimura. The
fibers of these sheaves are spaces of orbifold conformal blocks defined in joint work
with Edward Frenkel. The key ingredient is a G–equivariant version of the Virasoro
uniformization theorem.

1. Introduction

It is by now well-understood that conformal field theories (CFT’s) in two dimensions
give rise to sheaves with projectively flat connection over the moduli stack of n-pointed
genus g curves, Mg,n. Mathematically, this process can be described as follows (see for
instance the book [FB] for more details). Given a vertex algebra V , which corresponds
to a choice of CFT model, a collection of V –modules

M = (M1, · · · ,Mn),

and an n-pointed curve (X,p), p = (p1, · · · , pn), one obtains the vector space of con-
formal blocks, denoted CV (X,p, M). Elements of this vector space can be used to
construct chiral correlation functions in the CFT, which are sections of certain sheaves
on powers of X with pairwise diagonals removed. As (X,p) varies in Mg,n, one ob-
tains a sheaf with a projectively flat connection, known as the Knizhnik-Zamolodchikov
(KZ) connection. In certain cases, when the CFT is rational, the spaces CV (X,p, M)
are finite-dimensional. The sheaf is then a vector bundle that extends to the Deligne-
Mumford compactification Mg,n, and the connection to one with logarithmic singular-
ities along the boundary divisor.

In several cases, the space of conformal blocks is related to a moduli problem. For
instance, when V = Lk(g), the integrable basic ĝ–module of level k ∈ Z+, we have the
isomorphism

CLk(g)(X, p,Lk(g)) ∼= H0(BunG(X),Θk)

where BunG(X) is the moduli stack of G-bundles on X, G is the simply-connected
algebraic group with Lie algebra g, and Θ is the theta line bundle on BunG(X), In this
case, the KZ connection yields a non-abelian analogue of the heat equation satisfied by
abelian theta functions.

In recent years, much attention has been paid to the construction of CFT’s by orb-
ifolding. At the level of vertex algebras, this procedure can be described as follows. We
are given a vertex algebra V , and a finite group G of automorphisms of V that also acts
on the category of V –modules. One begins by taking G–invariants, and then adjoining
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so called twisted modules {M [g]}, for each conjugacy class [g] in G. Geometrically,
orbifold models possess the new feature of twist fields. These are objects that cause
vertex operators to become multivalued, with monodromies given by elements of G.

In [FS], the notion of conformal block was extended to include twisted modules. A
key ingredient is the notion of a pointed G–cover. Let (X,p) be a an n–pointed smooth
projective curve. A pointed G–cover of (X,p) is a set of data

(π : C #→ X,p,q), q = (q1, · · · , qn)

where C is a smooth projective curve (not necessarily connected) with an effective
action of G, such that X = C/G, the quotient map π : C #→ X makes C in to a
principal G–bundle over X\{pi}, and qi ∈ π−1(pi). The space of orbifold conformal
blocks, denoted

(1.1) CG
V (C,X,p,q, M)

is attached to a G–cover, and a collection of V –modules M = (M1, · · · ,Mn), where Mi

is twisted by the monodromy generator mi at qi. Orbifold conformal blocks can be used
to construct chiral orbifold correlators, which are G–invariant sections of sheaves on
powers of C with certain divisors removed. For a detailed treatment of this construction,
see our forthcoming paper [S].

In [JKK], following earlier work by [ACV], the authors introduce a smooth Deligne-
Mumford stack MG

g,n parameterizing smooth n–pointed G–covers. Given an appropriate
collection M of (twisted) V –modules, it is a natural question how the spaces 1.1 vary
as (π : C #→ X,p,q) moves in MG

g,n. In this paper, we construct sheaves with a

projectively flat connection over (certain components of) MG
g,n, whose fibers at a G–

cover (π : C #→ X,p,q) are the corresponding spaces 1.1. In other words, we construct
a localization functor

∆ : (V − mod) −→
(
D̃MG

g,n
− mod

)

where D̃MG
g,n

is a sheaf of twisted differential operators on MG
g,n, depending on the

Virasoro central charge. This yields an orbifold generalization of the KZ connection.
The resulting sheaves should be useful in constructing G-modular functors (see [Ki]).

In the untwisted case, the key theorem in the construction is the so called Virasoro
uniformization of Mg,n (see [ADKP], [BS], [Kon], [TUY] ). Roughly, this theorem
states that Mg,n is a flag manifold for the Virasoro algebra. We extend the approach
to G–covers.

Just as Mg,n can be compactified to Mg,n, so does MG
g,n have a compactification

MG
g,n. In this paper we do not address the behavior of the D–modules on the boundary

MG
g,n\M

G
g,n. Just as in the untwisted case, the existence of a logarithmic extension

requires the finite-dimensionality of conformal blocks. It is natural to conjecture that
such an extension is possible for the WZW model of positive integer level, when V =
Lk(g), and where the twisted modules are realized as integrable representations of
appropriate twisted affine algebras.

The structure of the paper is as follows. In section 2 we quickly review the notion
of vertex algebra and vertex algebra module/twisted module. Section 3 recalls some



ORBIFOLD CONFORMAL BLOCKS AND THE STACK OF POINTED G-COVERS 3

facts about the stack of pointed G–covers from [JKK]. In sections 4 and 5 we review
the construction of the space of orbifold conformal blocks CG

V (C,X,p,q, M) following
[FS]. Section 6 is devoted to reviewing Beilinson-Bernstein localization, which is the
technique used to produce D–modules on MG

g,n. Our treatment is essentially a con-
densed version of that in [FB]. Section 7 contains a proof of the G–equivariant Virasoro
uniformization of MG

g,n and the construction of the localization functor. Finally, section
?? gives a formula for the orbifold KZ connection along the fibers of the projection

MG
g,n #→ Mg,

sending (π : C #→ X,p,q) to X, i.e. the locus of pointed G–covers with a fixed base
curve.

Acknowledgments: I would like to thank Edward Frenkel and David Ben-Zvi for
many valuable conversations. I would also like to greatfully acknowledge the hospitality
of the Erwin Schrodinger Institute, where part of this work was completed. This
research was partially supported by NSF grant DMS-0401619.

2. Vertex algebras and twisted modules

In this paper we will use the language of vertex algebras, their modules, and twisted
modules. For an introduction to vertex algebras and their modules see [FLM, K, FB],
and for background on twisted modules, see [FFR, D, DLM, BK].

We recall that a conformal vertex algebra is a Z+–graded vector space

V =
∞⊕

n=0

Vn,

together with a vacuum vector |0〉 ∈ V0, a translation operator T of degree 1, a confor-
mal vector ω ∈ V2 and a vertex operation

Y : V → EndV [[z±1]],

A #→ Y (A, z) =
∑

n∈Z

A(n)z
−n−1.

These data must satisfy certain axioms (see [FLM, K, FB]). In what follows we will
denote the collection of such data simply by V .

A vector space M is called a V –module if it is equipped with an operation

Y M : V → EndM [[z±1]],

A #→ Y M (A, z) =
∑

n∈Z

AM
(n)z

−n−1

such that for any v ∈ M we have AM
(n)v = 0 for large enough n. This operation must

satisfy the following axioms:

• Y M (|0〉, z) = IdM ;
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• For any v ∈ M there exists an element

fv ∈ M [[z,w]][z−1, w−1, (z − w)−1]

such that the formal power series

Y M (A, z)Y M (B,w)v and YM (Y (A, z − w)B,w)v

are expansions of fv in M((z))((w)) and M((w))((z − w)), respectively.

The power series Y M (A, z) are called vertex operators. We write the vertex operator
corresponding to ω as

Y M (ω, z) =
∑

n∈Z

LM
n z−n−2,

where LM
n are linear operators on V generating the Virasoro algebra. Following [D],

we call M admissible if LM
0 acts semi-simply with integral eigenvalues.

Now let σV be a conformal automorphism of V , i.e., an automorphism of the underly-
ing vector space preserving all of the above structures (so in particular σV (ω) = ω). We
will assume that σV has finite order N > 1. A vector space Mσ is called a σV –twisted
V –module (or simply twisted module) if it is equipped with an operation

Y Mσ
: V → EndMσ[[z±

1
N ]],

A #→ Y Mσ
(A, z

1
N ) =

∑

n∈ 1
N Z

AMσ

(n) z−n−1

such that for any v ∈ Mσ we have AMσ

(n) v = 0 for large enough n. Please note that

we use the notation Y Mσ
(A, z

1
N ) rather than Y Mσ

(A, z) in the twisted setting. This
operation must satisfy the following axioms (see [FFR, D, DLM, Li]):

• Y Mσ
(|0〉, z

1
N ) = IdMσ ;

• For any v ∈ Mσ, there exists an element

fv ∈ Mσ[[z
1
N , w

1
N ]][z−

1
N , w− 1

N , (z − w)−1]

such that the formal power series

Y Mσ
(A, z

1
N )Y Mσ

(B,w
1
N )v and Y Mσ

(Y (A, z − w)B,w
1
N )v

are expansions of fv in Mσ((z
1
N ))((w

1
N )) and Mσ((w

1
N ))((z−w)), respectively.

• If A ∈ V is such that σV (A) = e
2πim

N A, then AMσ

(n) = 0 unless n ∈ m
N + Z.

The series Y Mσ
(A, z) are called twisted vertex operators. In particular, the Fourier

coefficients of the twisted vertex operator

Y Mσ
(ω, z

1
N ) =

∑

n∈Z

LMσ

n z−n−2,

generate an action of the Virasoro algebra on Mσ. The σV –twisted module Mσ is
called admissible if LMσ

0 acts semi-simply with eigenvalues in 1
N Z.

Suppose that Mσ is an admissible module. Then we define a linear operator Sσ on
Mσ as follows. It acts on the eigenvectors of LMσ

0 with eigenvalue m
N by multiplication

by e
2πim

N . Hence we obtain an action of the cyclic group of order N generated by σ
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on Mσ, σ #→ Sσ. According to the axioms of twisted module, we have the following
identity:

(2.1) S−1
σ Y Mσ

(σ · A, z
1
N )Sσ = Y Mσ

(A, z
1
N ).

3. The stack of pointed G-covers

In this section we review the definition of the stack of pointed G-covers introduced
in [JKK] following [ACV].

Let Mg,n denote the stack of smooth n-pointed curves of genus g. The objects of
Mg,n consist of families (λ : X #→ S, p1, · · · , pn) where λ : X #→ S is a smooth family
of curves of genus g, and pi : S #→ X, i = 1, · · · , n are pairwise disjoint sections of λ.
Note that the pi are ordered.

Definition 3.1. Let (λ : X #→ S, p1, · · · , pn) ∈ Mg,n be a smooth n–pointed curve,
and G a finite group. A smooth G–cover of X consists of a morphism π : C #→ X of
smooth curves over S, satisfying the following properties:

• There is a right G–action on C preserving π.
• C\ ∪i π−1(pi) is a principal G–bundle over X\ ∪i pi

We denote the smooth G–cover by (π : C #→ X, p1, · · · , pn). A smooth n–pointed G–
cover consists of a smooth G–cover (π : C #→ S, p1, · · · , pn) together with n sections
qi : S #→ C such that qi ∈ π−1(pi). We denote it by (π : C #→ X, p1, · · · , pn, q1, · · · , qn).

To avoid cumbersome notation, we will henceforth use (X,p), (C,X,p), and (C,X,p,q),
to denote respectively, an n–pointed curve, a G–cover, and a pointed G–cover, where
p = (p1, · · · , pn) and q = (q1, · · · , qn).

A morphism of pointed G–covers is a G–equivariant fibered diagram - that is, a
morphism of the underlying curves X together with a G–equivariant morphism of the
covers preserving the points qi. Smooth n–pointed G–covers form a stack, denoted
MG

g,n. There is an obvious morphism

p : MG
g,n #→ Mg,n

(C,X,p,q) #→ (X,p)

Let GA denote the group G viewed as a right G–space under conjugation. There is
a G–equivariant map

e : MG
g,n #→ Gn

A

sending (C,X,p,q) to the n–tuple m = (m1, · · · ,mn), where mi is the monodromy of
C around qi. Let MG

g,n(m) denote the closed sub-stack e−1(m). Note that MG
g,n(m)

may be empty. We have

MG
g,n =

⋃

m∈Gn
A

MG
g,n(m)

We have the following theorem:

Theorem 3.1. [JKK] The stack MG
g,n and the stacks MG

g,n(m) are smooth Deligne-
Mumford stacks, flat, proper, and quasi-finite over Mg,n.
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4. Groups and torsors

The purpose of this section is to review the structure of the group of formal coordinate
changes on the ”formal” disk Spec(R[[z]]) and the ”formal punctured disk” Spec(R((z)))
for an arbitrary C–algebra R. We will be primarily interested in the case when R is
an Artin C-algebra, such as C[ε]/(ε2). For more on the structure of these groups, see
Section 5.1 of [FB], or the original source [MP].

4.1. Groups. Let us denote R[[z]] by OR, and R((z)) by KR. Let Aut(OR) denote the
group of continuous R–algebra automorphisms of R[[z]] preserving the ideal (z), and
Aut(KR) the group of all continuous R–algebra automorphisms of R((z)). Since R[[z]]
is topologically generated by z, an automorphism ρ of R[[z]] is completely determined
by the image of z, which is a series of the form

(4.1) ρ(z) =
∑

n∈Z,n≥1

cnzn, cn ∈ R

where c1 is a unit. Hence we identify Aut(OR) with the space of power series in z
satisfying these conditions. Similarly, an element ρ of Aut(KR) can be identified with
a formal Laurent series of the form

ρ(z) =
∑

n∈Z,n≥k

cnzn,

where cn is nilpotent if n ≤ 0, and c1 is a unit. The functor

R #→ Aut(OR)

is representable by a group scheme over C which we’ll denote AutO. The Lie algebra
Der(o)(O) of Aut(O) is topologically generated by elements

zk∂z, k ≥ 1

The functor
R #→ Aut(KR)

is representable by an Ind-group scheme which we’ll denote Aut(K). Denote by Der(K)
the Lie algebra of Aut(K), generated by

zk∂z , k ∈ Z

We now consider some groups arising in the study of ramified coverings of disks.

Let Aut(R[[z
1
N ]]) denote the group of continuous R–algebra automorphisms of R[[z

1
N ]]

preserving the ideal (z
1
N ).

Definition 4.1. AutN (OR) is the subgroup of Aut(R[[z
1
N ]]) preserving the subalgebra

R[[z]] ⊂ R[[z
1
N ]].

Thus, AutN O consists of power series of the form

(4.2) ρ(z
1
N ) =

∑

n∈ 1
N +Z,n>0

cnzn, cn ∈ R

such that c 1
N

is a unit.
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There is a homomorphism µN : AutN (OR) → Aut(OR) which takes ρ ∈ AutN (OR)
to the automorphism of R[[z]] that it induces. At the level of power series, this is just

the map µN : ρ(z
1
N ) #→ ρ(z

1
N )N . The kernel consists of the automorphisms of the form

z
1
N #→ εz

1
N , where ε is an Nth root of unity, so we have the following exact sequence:

1 → Z/NZ → AutN (OR) → Aut(OR) → 1 .

Thus AutN (OR) is a central extension of Aut(OR) by the cyclic group Z/NZ. One can
define the group AutN (KR) in an obvious way. Denote by AutN (O) the group scheme
representing the functor R #→ AutN (OR), and AutN (K) the Ind-group scheme repre-

senting R #→ AutN (KR). The Lie algebra Der(o)N (O) of AutN (O) can be identified with

z
1
N C[[z]]∂

z
1
N

. The homomorphism µN induces an isomorphism of the corresponding

Lie algebras sending

(4.3) zk+ 1
N ∂

z
1
N

#→ Nzk+1∂z, k ∈ Z, k ≥ 0.

Similarly, the Lie algebra DerN (K)of AutN (K) can be identified with z
1
N C((z))∂

z
1
N

,

and µN extends to a homomorphism DerN (K) #→ Der(K).
Let X be a smooth curve over SpecR. If x ∈ X is an R–valued point of X, denote

by Aut(Ôx,R) the automorphisms of the formal neighborhood of x fixing x. Suppose
now that C is a smooth curve over SpecR with effective G–action, and that X = C/G.
Denote the quotient map by π : C #→ X. Choosing a formal coordinate z at x yields
an isomorphism Aut(Ôx,R) ∼= Aut(OR) (For the definition of a formal coordinate, see
the next section).

If y ∈ C, denote by O(y) the G–orbit of y in C, and by Ô(y) the formal neighborhood

of O(y). Let Ô(y)
∗

denote the union of the formal punctured disks around points in

O(y). Note that Ô(y) and Ô(y)
∗

carry an action of G. Let

Aut(Ô(y)R) resp.Aut(Ô(y)
∗

R)

denote the automorphism group of O(y) and O(y)∗ respectively, and

AutG(Ô(y)R) resp.AutG(C, Ô(y)
∗

R)

the corresponding subgroups of elements commuting with G. Finally, denote by

AutGe (Ô(y)R) resp.AutGe (Ô(y)
∗

R)

the identity components of the corresponding groups. For each q ∈ O(y), by choosing
a coordinate in which the action of the stabilizer Gq is linear (this is called a special
coordinate, see the next section), we obtain isomorphisms

ψq : AutGe (Ô(y)R) #→ AutN (OR)

and

ψ∗
q : AutGe (Ô(y)

∗

R) #→ AutN (KR)
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by restricting to the disk around q. The proof amounts to observing that any element

of AutN (OR) has a unique G–equivariant extension to AutGe (Ô(y)R) (and the same

with Ô replaced by Ô∗).

4.2. Torsors. Let DR = SpecA, where A ∼= R[[z]] is a “formal” R–disk, and let
x ∈ DR be an R–point. By a formal coordinate on (DR, x) we mean a isomorphism
DR

∼= Spec(R[[z]]) that identifies x with the origin (the origin being the R–point
corresponding to the ideal (z) ⊂ R[[z]]). Let Aut(DR,x) denote the set of formal
coordinates on (DR, x). It is an Aut(OR)–torsor.

Suppose now that (DR, x,σD) is a triple consisting of a formal disk DR = SpecB,

where B ∼= R[[z
1
N ]], x ∈ DR, and σD is an automorphism of D (equivalently, of B) of

order N fixing x. After a change of coordinate, σD is equivalent to the automorphism

z
1
N #→ εz

1
N , where ε is a primitive Nth root of unity. We denote by D the quotient

of D by 〈σD〉, i.e., the disk SpecBσD , where BσD is the subalgebra of σD–invariant
elements.

A formal coordinate t is called a special coordinate with respect to σD if σD(t) = εt,
where ε is an Nth root of unity, or equivalently, if tN is a formal coordinate on D. We
denote by AutN (DR,x) the subset of Aut(DR,x) consisting of special formal coordinates.
The set AutN (DR,x) carries a simply transitive right action of the group AutN (OR)
given by t #→ ρ(t), where ρ is the power series given in (4.2), i.e. AutN (DR,x) is an
AutN (OR)–torsor.

Suppose now that π : C #→ X = C/G as above, and that y ∈ C. Let N denote the
order of the stabilizer Gy, which is cyclic, and generated by the monodromy around
y, my. To this data we can associate the set AutN (DR,y) of special coordinates on

(Spec Ôy, y) with respect to Gy, which is an AutN (OR)–torsor.
Note that when R = C, DR has a unique R–point, and we will suppress it in the

notation. Henceforth, we will also use the convention that DC is denoted D, and
suppress R when referring to groups, torsors, etc.

5. Orbifold conformal blocks

In this section we review the definition of orbifold conformal blocks introduced in
[FS].

5.1. Twisting modules by AutN (D). Let D be a disk with an N–th order automor-
phism as in the last section, and let Mσ be an admissible σV –twisted module over a

conformal vertex algebra V . Define a representation rMσ
of the Lie algebra Der(o)N (O)

on Mσ by the formula

zk+ 1
N ∂

z
1
N

→ −N · LMσ

k .

It follows from the definition of a twisted module that the operators LMσ

k , k > 0, act lo-
cally nilpotently on Mσ and that the eigenvalues of LMσ

0 lie in 1
N Z, so that the operator

N · LMσ

0 has integer eigenvalues. This implies that the Lie algebra representation rMσ

may be exponentiated to a representation RMσ
of the group AutN (O). In particular,

the subgroup Z/NZ of AutN (O) acts on Mσ by the formula i #→ Si
σ, where Sσ is the

operator defined in Section 2.
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We now twist the module Mσ by the action of AutN O and define the vector space

(5.1) Mσ(D)
def
= AutN (D) ×

AutN O

Mσ.

Thus, vectors in Mσ(D) are pairs (t, v), up to the equivalence relation

(ρ(t), v) ∼ (t, RMσ
(v)), t ∈ AutN (D), v ∈ Mσ.

When D=Dx, the formal neighborhood of a point x on an algebraic curve X, we will
use the notation Mσ

x.

5.2. The vector bundle VG
X . Let (X,p) be a smooth n–pointed curve over Spec(C),

and let π : C #→ X be a smooth G–cover of (X,p). Suppose furthermore that V is
a conformal vertex algebra, and that G acts on V by conformal automorphisms. Let
AutC be the Aut(O)–torsor over C whose fiber at y ∈ C is Aut(Dy)the set of formal
coordinates at y. As explained in [FB], Aut(O) acts on V , and the action commutes
with G. Let

VC = AutC ×
Aut(O)

V

The vector bundle VC carries a G–equivariant structure lifting the action of G on C.
It is given by

(5.2) g · (p, (A, z))
def
= (g(p), (g(A), z ◦ g−1))

where z ◦ g−1 is the coordinate induced at g(p) from z. Let
◦
C ⊂ C denote the open

set on which the G–action is free, and let
◦
X ⊂ X = π(

◦
C). Thus,

◦
C is a G–principal

bundle over
◦
X. V ◦

C
descends to a vector bundle VG

◦
X

on
◦
X. More explicitly,

(5.3) VG
◦
X

= Aut ◦
C

×
Aut(O)×G

V

Here, G acts on Aut ◦
C

by g(p, z) = (g(p), z ◦ g−1), and this action commutes with the

action of Aut(O). The vector bundle VG
◦
X

possesses a flat connection ∇G. If z is a local

coordinate at x ∈
◦
X, ∇G is given by the expression d + LV

−1 ⊗ dz.

5.3. Modules along G–orbits. Let y ∈ C. Then every point r ∈ O(y) has a cyclic
stabilizer of order N , which we denote Gr. Each Gr has a canonical generator hr, which
corresponds to the monodromy of a small loop around p = π(y). For a generic point r,
N = 1, Gr = {e} and we set hr = e. Suppose that we are given the following data:

(1) A collection of admissible V –modules {Mhr
r }r∈O(y), one for each point in the

orbit, such that Mhr
r is hr–twisted.

(2) A collection of maps Sg,r,g(r) : Mhr
r #→ M

hg(r)

g(r) , g ∈ G, r ∈ π−1(p), commuting

with the action of AutN O and satisfying

Sgk,r,gk(r) = Sg,k(r),gk(r) ◦ Sk,r,k(r),

S−1
g,r,g(r) = Sg−1,g(r),r,
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and

S−1
g,r,g(r)Y

M
hg(r)
g(r) (g · A, z)Sg,r,g(r) = Y Mhr

r (A, z).

(3) If g ∈ Gr, then Sg,r,r = Sg, where Sg is the operator defined in Section 2.

Given a collection {Mhr
r }r∈O(y), we can form the collection {Mhr

r (Dr)}r∈O(y), where

Mhr
r (Dr) is the AutN O–twist of Mhr

r by the torsor of special coordinates at p. Let

MO(y) =
⊕

r∈O(y)

Mhr
r (Dr)

This is a representation of G, where G acts as follows. If A ∈ Mhr
r , z

1
N
r is a special

coordinate at r, and g ∈ G, then

g · (A, z
1
N
r ) = (Sg,r,g(r) · A, z

1
N
r ◦ g−1)

Note that this action is well-defined since the S–operators commute with the action of
AutN O. Now, let MO(y) = (MO(y))

G, the space of G–invariants of MO(y). For every
r ∈ O(y) let

φr : MO(y) #→ Mhr
r (Dr)

be the isomorphism which is the composition of the inclusion MO(y) → MO(y) and the

projection MO(y) → Mhr
r (Dr).

For vr ∈ Mhr
r (Dr), let [vr] denote φ−1(vr) ∈ MO(y). Note that for each (A, z

1
N
r )r ∈

Mhr
r (Dr), and g ∈ G, [(A, z

1
N
r )r] = [(Sg,r,g(r) · A, z

1
N
r ◦ g−1)g(r)] in Mp.

Definition 5.1. We call MO(y) a V –module along O(y).

Henceforth, we will suppress the square brackets for elements of MO(y) and refer to

[(A, z
1
N
r )r] simply as (A, z

1
N
r ).

5.4. Construction of Modules along G–orbits. In this section we wish to describe
an induction procedure which yields a module along O(y) starting with a point r ∈ O(y)
and an hr–twisted module Mhr

r . Note that when Gr is trivial, this just an ordinary
V –module M .

Thus, suppose we are given r ∈ O(y), and an hr–twisted module Mhr
r . Observe that

the monodromy generator at the point g(r) is hg(r) = ghrg−1, i.e. the monodromies
are conjugate.

(1) For g ∈ G, define the module Mghrg−1

g(r) to be Mhr
r as a vector space, with the

V –module structure given by the vertex operator

(5.4) Y
Mghrg−1

g(r) (A, z) = Y Mhr
r (g−1 · A, z)

It is easily checked that this equips Mghrg−1

g(r) with the structure of a ghrg−1–

twisted module. Furthermore, if g ∈ Gr, this construction results in an hr–
twisted module isomorphic to Mhr

r .
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(2) Recall that Mhs is canonically isomorphic to Mhr
r as a vector space by the

previous item. Thus, if s ∈ O(y), and g(s) 0= s, define Sg,s,g(s) to be the
identity map.

(3) If g ∈ Gs, then g is conjugate to an element g′ ∈ Gr. Define Sg,s,s = Sg′,r,r also
using the canonical identification.

It is easy to check that this construction is well-defined, and satisfies the requirements
of definition 5.1.

Definition 5.2. We call a module along O(y) obtained via this construction a module

along O(y) induced from Mhr
r , and denote it IndO(y)

r (Mhr

r ).

Remark 1. If Gr is trivial, and M = V , then for any g ∈ G, the new module structure 5.4
is isomorphic to the old one, and so the resulting module Mp along O(y) is isomorphic
to VG

p , the fiber of the sheaf VG at p.

Remark 2. If G = Gr, then r is unique, and so any hr–twisted module results in a
module along O(y).

Now, let m = (m1, · · · ,mn) ∈ Gn
A be a collection of monodromies. Let (π : C #→

X, p1, · · · , pn, q1, · · · , qn) ∈ e−1(m) be a pointed G–cover with the prescribed mon-
odromies. Given a collection M1, · · · ,Mn of V –modules, such that Mi is mi–twisted,

the above induction procedure yields a collection IndO(q1)
q1 (M1), · · · , IndO(qn)

qn (Mn), of
modules along O(qi).
Note: We can label G–orbits on C by points of p ∈ X. We will use the notation Mp

to denote a module along the G–orbit π−1(p).

5.5. Geometric Vertex Operators. Let p ∈ X, and Mp a V –module along π−1(p).
Let D×

p denote the formal punctured disk SpecKp. It is shown in [FS] that the vertex
operator gives rise to a section

YMp,∨ : Γ(D×
p ,VG

◦
X
⊗ Ω ◦

X
) → EndMp.

Moreover, this map factors through the quotient

U(VG
p )

def
= Γ(D×

p ,VG
◦
X
⊗Ω ◦

X
)/ Im∇G,

which has a natural Lie algebra structure. The corresponding map

(5.5) yp : U(VG
p ) → EndMp

is a homomorphism of Lie algebras. Note that p does not have to lie in
◦
X, but can be

any point of X.
For each r ∈ π−1(p), composing the above maps with the isomorphism EndMp

∼=
EndMhr

r (Dr) induced by φr yields a map:

Y
Mp,∨
r : Γ(D×

p ,VG
◦
X
⊗ Ω ◦

X
) → EndMhr

r (Dr)

and a Lie algebra homomorphism

(5.6) yp,r : U(VG
p ) → EndMhr

r (Dr).
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5.6. A sheaf of Lie algebras. Following Section 8.2.5 of [FB], let us consider the

following complex of sheaves (in the Zariski topology) on
◦
X:

0 → VG
◦
X

∇
−→ VG

◦
X
⊗ Ω ◦

X
→ 0

where VG
◦
X

⊗ Ω ◦
X

is placed in cohomological degree 0 and VG
◦
X

is placed in cohomolog-

ical degree −1 (shifted de Rham complex). Let h(VG
◦
X

) denote the sheaf of the 0th

cohomology, assigning to every Zariski open subset Σ ⊂
◦
X the vector space

UΣ(VG
◦
X

)
def
= Γ(Σ,VG

◦
X
⊗ Ω ◦

X
)/ Im∇G

One can show as in Chapter 18 of [FB] that this is a sheaf of Lie algebras.

According to formula (5.5), for any p ∈ Σ′, where Σ′ ⊂ X is such that Σ′ ∩
◦
X = Σ,

restriction induces a Lie algebra homomorphism ιp : UΣ(VG
◦
X

) → U(VG
p ). We denote the

image by UΣ(VG
p ).

5.7. Conformal Blocks. Let (π : C #→ X,p) be a G–cover, and M = (Mp1, · · · ,Mpn)
a collection of modules along π−1(p1), · · · ,π−1(pn). Let

F =
⊗

Mpi

Composing the maps 5.5 with the map

UX\p(VG
◦
X

)
∑

ιpi→
n⊕

i=1

U(VG
pi

)

we obtain an action of the Lie algebra UX\p(VG
◦
X

) on F.

Definition 5.3. The space of coinvariants is the vector space

HG
V (C,X,p, M) = F/UX\p(VG

◦
X

) · F.

The space of conformal blocks is its dual: the vector space of UX\p(VG
◦
X

)–invariant

functionals on F

CG
V (C,X,p, M) = HomUX\p(VG

◦
X

)(F, C).

Suppose now that (π : C #→ X,p,q) is a pointed G–cover, that mi denotes the
monodromy at qi, and that M1, · · · ,Mn is a collection of V –modules such that Mi is

mi–twisted. Then IndO(qi)
qi (Mi) is a module along O(qi), and we can apply our definition

above with
M = (IndO(q1)

q1
(M1), · · · , IndO(qn)

qn
(Mn))

In this case, to emphasize the dependence on the points qi in the fiber, we use the
notation HG

V (C,X,p,q, M) and CG
V (C,X,p,q, M).

Denote by Mqi the twist of Mi by the torsor of special coordinates at qi. For each i,
we have the following commutative diagram of Lie algebras:
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U(VG
pi

)
ypi−−−−→ EndMpi∥∥∥ φqi

,

U(VG
pi

)
ypi,qi−−−−→ EndMqi

Letting F̃ =
⊗

Mqi , the commutativity of the diagram implies that

HG
V (C,X,p,q, M) ∼= F̃/UX\p(VG

◦
X

) · F̃.

and
CG

V (C,X,p,q, M) = HomUX\p(VG
◦
X

)(F̃, C).

6. Localization Functors

The purpose of this section is to review the general yoga of Beilinson-Bernstein
localization (see [BB1, BB2, BS, FB]) following [FB].

Definition 6.1. A Harish-Chandra pair is a pair (g,K) where g is a Lie algebra and
K is an algebraic group, equipped with the following data: an embedding k ⊂ g of the
Lie algebra k of K into g, and an action Ad of K on g compatible with the adjoint
action of K on k and the action of k on g. A (g,K)–module is a vector space V carrying
compatible actions of g and K.

Definition 6.2. Let Z be a variety over C. A (g,K)–action on Z is an action of K on
Z, together with a Lie algebroid homomorphism α : g⊗OZ #→ TZ to the tangent sheaf
of Z. The two actions must satisfy the following compatibility conditions:

(1) The restriction of α to k ⊗ OZ is the differential of the K–action.
(2) α(Adk(a)) = kα(a)k−1

The action is said to be transitive if α is surjective, and simply transitive if α is an
isomorphism.

These definitions extend naturally to the world of pro-algebraic groups, pro-varieties,
and pro-stacks. (see [BB2, BFM]).

Suppose now that Z #→ S is a principal K–bundle, and that Z carries a transitive
(g,K)–action extending the fibrewise K–action. Let V be a (g,K)–module. The sheaf
V ⊗ OZ carries an action of the algebroid g ⊗ OZ , and it follows from the surjectivity
of α that Vstab = V ⊗ OZ/ker(α) · (V ⊗ OZ) is a module for the algebroid TZ , and
therefore a DZ–module, where the latter denotes the sheaf of differential operators on
Z. Moreover, the K–equivariance requirement in the definition of (g,K)–action and
(g,K)–module ensures that Vstab is K–equivariant, and so descends to a DS–module,
which we denote ∆(V ).

We will need a description of the fiber of ∆(V ) at a point s ∈ S. Let Zs denote the
fiber of Z over s, and let gs denote the Lie algebra Zs ×

K
g. The ideals ker(α)z , z ∈ Zs

give rise to a well-defined Lie ideal gs
stab ⊂ gs. Denote Zs×

K
V by Vs. The action of g on

V induces an action of gs on Vs. One can show (see [FB]) that ∆(V )s ∼= Vs/gs
stab · Vs.
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Definition 6.3. The functor

∆ : ((g,K) − mod) −→ (DS − mod)

sending V to ∆(V ) is called the localization functor associated to the (g,K)–action on
Z.

More generally, suppose that V is a module for a Lie algebra l, which contains g as a
Lie subalgebra and carries a compatible adjoint K–action. V ⊗OZ is then a module over
the Lie algebroid l⊗OZ . Suppose also that we are given a subsheaf of Lie subalgebras
l̃ ⊂ l ⊗ OZ satisfying the following conditions:

(1) it is preserved by the action of K
(2) it is preserved by the action of the Lie algebroid g ⊗ OZ

(3) it contains ker(α)

Then, for the same reason as above, the sheaf V ⊗ OZ /̃l · (V ⊗ OZ) becomes a K–
equivariant DZ–module, and so descends to a DS–module which we denote ∆̃(V ). Let
s ∈ S, and Zs be as above. Denote by ls the Lie algebra Zs×

K
l. The fibers l̃z, z ∈ Zs give

rise to a well-defined subalgebra l̃s ⊂ ls, and the fiber ∆̃(V )s is isomorphic to Vs/̃ls ·Vs.

6.1. Localization of central extensions. Suppose as above, that (g,K) is a Harish-
Chandra pair, and that Z #→ S is a K–principal bundle with a transitive (g,K)–action
extending the fibrewise K–action. Suppose also that g has a central extension

0 #→ C #→ ĝ #→ g #→ 0

which splits over k. Tensoring the above extension by OZ we obtain an extension of Lie
algebroids

(6.1) 0 #→ OZ #→ ĝ ⊗ OZ #→ g ⊗ OZ #→ 0

We will assume henceforth that the extension 6.1 splits over ker(α), so that we get an
embedding of the ideal ker(α) into ĝ ⊗ OZ . The quotient T of ĝ ⊗ OZ by ker(α) now
fits into an extension of Lie algebroids

(6.2) 0 #→ OZ #→ T #→ TZ #→ 0

Let V be a (ĝ,K)–module. The sheaf V ⊗ OZ carries an action of the Lie algebroid
ĝ ⊗ OZ , and so the quotient V̂stab = V ⊗ OZ/ker(α) · (V ⊗ OZ) carries an action of T.
Let D′

Z = U(T), the enveloping algebroid of T. This is a sheaf of twisted differential

operators (a TDO), and the T–action on V̂stab extends naturally to an action of D′
Z .

By the same argument as above, D′
Z and V̂stab are K–equivariant, and so is the action

of D′
Z on V̂stab. D′

Z therefore descends to a TDO D′
S on S, and V̂stab to a D′

S–module
which we denote ∆(V ). Let ĝs denote the Lie algebra Zs×

K
ĝ. The ideals ker(α)z , z ∈ Zs

give rise to a well-defined Lie ideal ĝs
stab ⊂ ĝs. Denote Zs ×

K
V by Vs. The action of

ĝ on V induces an action of ĝs on Vs. The fiber ∆(V )s is isomorphic to Vs/ĝs
stab · Vs.

Thus, a central extension ĝ of g gives rise to a localization functor

∆ : ((ĝ,K) − mod) −→
(
D′

S − mod
)

sending V to ∆(V ).
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More generally, suppose ĝ is a Lie subalgebra of l̂, and we are given a subsheaf
l̃ ⊂ l̂ ⊗ OZ containing ker(α), preserved by the actions of K and ĝ ⊗ OZ . Let V be

a l̂–module carrying a compatible K–action. The sheaf V ⊗ OZ/l̃ · (V ⊗ OZ) is then
a K–equivariant D′

Z–module, and descends to a D′
S–module on S, which we denote

∆̃(V ). Let l̂s = Zs ×
K

l̂, and denote by l̃s ⊂ l̂s the subalgebra arising from the stabilizers

in Zs. The fiber ∆̃(V )s is isomorphic to Vs/̃ls · Vs.

7. G–equivariant Virasoro uniformization

Let M̂G
g,N = {(π : C #→ X,p,q, z)} where (π : C #→ X,p,q) is an n- pointed G–cover,

and z = (z1, · · · , zn), where zi is a special coordinate at qi. This is a projective limit
of Deligne-Mumford stacks. Forgetting the coordinates yields a map

M̂G
g,n

ξ

,

MG
g,n

Similarly, let M̂g,n = {(X,p,q, z′)} where (X,p) ∈ Mg,n and z′ = (z
′

1, · · · , z
′

n), where
z
′

i is a formal coordinate at pi. Forgetting the coordinates yields a map

M̂g,n

ζ

,

Mg,n

Moreover, there exists a map η : M̂G
g,n #→ M̂g,n defined by

η : (π : C #→ X,p,q, z) #→ (X,p, z′)

where z′i = zNi
i , and Ni is the order of Gqi making the following diagram commute:

M̂G
g,n

η
−−−−→ M̂g,n

ξ

,
,ζ

MG
g,n −−−−→

p
Mg,n

For a C-algebra R, let

Aut(C/X,OR) = AutN1(OR) × AutN2(OR) × · · · × AutNn(OR)

and

Der(o)(C/X,O) = Der(o)N1
(O) × · · ·× Der(o)Nn

(O).

Similarly, define Aut(C/X,KR) and Der(C/X,K) in the obvious way. We have that
Der(C/X,O) (resp. Der(C/X,K)) is the Lie algebra of the group scheme (resp. ind-
scheme) representing R #→ Aut(C/X,OR) (resp. R #→ Aut(C/X,KR)). We see that
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M̂G
g,n is an Aut(C/X)–torsor over MG

g,n. The following is a generalization of the Vira-
soro uniformization theorem (see [ADKP], [BS], [Kon], [TUY]) to G–covers.

Theorem 7.1. M̂G
g,N carries a transitive action of Der(C/X,K) extending the action

of Aut(C/X,O) along the fibers of ξ.

Proof. Let R = C[ε]/(ε2). A family of G–covers and special coordinates over SpecR is

the same as a tangent vector to M̂G
g,N . Thus to construct an action of Der(C/X,K) on

M̂G
g,N and prove transitivity, it suffices to do it over R. In fact, we construct an action

of the corresponding group Aut(C/X,KR). Suppose that (π : C #→ X,p,q, z) is an

R–point of M̂G
g,n, and that ρ ∈ Aut(C/X,KR). Let

AutGe (C/X,KR) = AutGe (Ô(q1)
∗
,KR) × · · ·× AutGe (Ô(qn)

∗
,KR)

We have an isomorphism

ψ∗
q1

× · · ·× ψ∗
qn

: AutGe (C/X,KR) #→ Aut(C/X,KR).

under which ρ corresponds to an element ρG of AutGe (C/X,KR).
At each point r of O(qi), there is a set of Ni special coordinates compatible with zi

(i.e. obtained from zi by applying elements of G), and we choose one arbitrarily, and
call it wr. We now define the new ρ–twisted G–cover

(π : Cρ #→ Xρ,pρ,qρ, zρ)

by the following: as a topological space, Cρ = C and Xρ = X, but the structure
sheaf of Cρ is changed as follows. Let U ∈ C be Zariski open. If O(qi) ∩ U = ∅,∀i,
define OCρ(U) = OC(U). If U intersects the orbits O(qi) at the points r1, · · · , rm,
define OCρ(U) to be the subring of OC(U\{rj}j=1,··· ,m) consisting of functions f whose
expansion frj(wrj ) ∈ R((wrj )) at rj in the coordinate wrj satisfies frj(ρ

G,−1(wrj )) ∈
R[[wrj ]]. Since the gluing is G–equivariant, Cρ is again a G–cover.

We now prove transitivity. The homomorphisms µN : AutN (KR) #→ Aut(KR) induce
a homomorphism

µC/X : Aut(C/X,KR) #→ Aut(X,KR)
def
= Aut(KR) × · · ·× Aut(KR) (n times)

The following diagram commutes:

M̂G
g,n

η
−−−−→ M̂g,n

ρ

,
,µC/X(ρ)

M̂G
g,n −−−−→

η
M̂g,n

The transitivity follows from the fact that the action of Aut(X,KR) on M̂g,n is transitive
(by [ADKP], [BS], [Kon], [TUY]), the fact that η is a quasi-finite map, and µC/X is
surjective.

!
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Let O(q) =
⋃

i O(qi). The stabilizer of (π : C #→ X,p,q, z) is the subgroup
Aut(C/X,K)out ∈ Aut(C/X,K) consisting of those elements that preserve OC(C\O(q)).
The Lie algebra of Aut(C/X,K)out is the Lie algebra of G–invariant vector fields on
C\O(q), denoted VectG(C\O(q)). Note that

VectG(C\O(q) ∼= Vect(X\p)

where Vect(X\p) denotes the space of vector fields on X\p. We thus obtain a local-
ization functor

∆ : ((Der(C/X),Aut(C/X)) − mod) −→
(
DMG

g,n
− mod

)

M #→ ∆(M)

The fiber of ∆(M) at (π : C #→ X,p,q, z) is M/VectG(C\O(q)}) · M, where M is the
Aut(C/X)–twist of M.

We want to construct a localization functor that sends modules along orbits to D–
modules whose fibers are spaces of orbifold conformal blocks. We now proceed with
this construction.

7.1. Construction of the Lie algebroid UG(V )out. In this section we construct a

Lie algebroid UG(V )out over M̂G
g,n whose fiber at (π : C #→ X,p,q, z) is the Lie algebra

UX\p(VG
◦
X

) of section 5.6. Each G–cover in a fixed component MG
g,n has a fixed genus,

which we’ll denote h. This fixed component of MG
g,n, parameterizing a family of genus

h curves with n marked points thus comes with a map to Mh,n. Denote by Xh the
universal pointed curve over Mh. Consider the following fibered product

X̂h = M̂G
g,n ×

Mh

Xh −−−−→ Xh

,
,

M̂G
g,n −−−−→ Mh

Thus X̂h can be viewed as the universal pointed G–cover over MG
g,n. The projection

X̂h #→ M̂G
g,n comes with sections qi : M̂G

g,n #→ X̂h, and applying elements of the group
G, we obtain sections passing through every point of O(qi).

We now wish to construct the coordinate bundle over X̂h. This can be done as
follows: consider the diagram

S = M̂G
g,n ×

Mh

M̂h,1 −−−−→ M̂h,1

,
,

M̂G
g,n −−−−→ Mh

We see that S is an Aut(O)–bundle over X̂h. Let

V
X̂h

= S ×
Aut(O)

V
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- this is a sheaf over X̂h. V
X̂h

possesses a flat connection ∇G along the fibers of the

projection X̂h #→ M̂G
g,n, which along each fiber restricts to the connection ∇G of section

5.2, i.e. we have a complex

0 #→ V
X̂h

∇G

#→ V
X̂h

⊗ Ω
X̂h/M̂G

g,n
#→ 0

Restricting this complex to X̂h\O(q), taking de Rham cohomology along the fibers,
and then G–invariants, yields the Lie algebroid UG(V )out.

7.2. Sheaves of Conformal Blocks. Let m = (m1, · · · ,mn) be a collection of mon-
odromies, and M = (M1, · · · ,Mn) a collection of V –modules such that Mi is mi–twisted
and admissible. Let U(Mi) denote the Lie algebra of Fourier coefficients of (twisted)
vertex operators acting on Mi, and let

U(M) = U(M1) × · · ·× U(Mn)

The data of the local coordinates in M̂G
g,n allows us to embed the Lie algebroid UG(V )out

inside U(M)⊗O
M̂G

g,n
(by expanding vertex operators in the local coordinates), and the

Virasoro operators acting on the modules yield the embedding

Der(C/X,K) ⊗ O
M̂G

g,n
↪→ U(M) ⊗ O

M̂G
g,n

Denote by VectG(C\O(q)) the Lie algebroid on M̂G
g,n whose fiber at (π : C #→ X,p,q, z)

is VectG(C\O(q)). Again, the local coordinates allow us to identify it with a subalge-
broid of Der(C/X,K) ⊗ O

M̂G
g,n

. Furthermore, under this identification,

VectG(C\O(q)) ↪→ UG(V )out.

The same argument that is used in [FB], chap. 16, shows that UG(V )out is preserved

by the Aut(C/X)-action on M̂G
g,n

Let M =
⊗

i Mi. This is a U(M)–module and a (g,K)–module for the Harish-
Chandra pair (Der(C/X),Aut(C/X)). We are thus in the setup of section 6, with
l = U(M) ⊗ O

M̂G
g,n

and l̃ = UG(V )out. Suppose first that the Virasoro central charge c

vanishes. Beilinson-Bernstein localization then yields a D–module HG
V (M) on MG

g,n(m)
whose fiber at (π : C #→ X,p,q) is

(7.1) F̃/UX\p(VG
◦
X

) · F̃

where F̃ denotes the Aut(C/X)-twist of M by the torsor of special coordinates at
the points qi. By the comments at the end of section 5.7, this space is exactly
HG

V (C,X,p,q, M).

Suppose now that c is non-zero, and let D̂er(C/X) denote the central extension of
Der(C/X) obtained as the Baer sum of Virasoro cocycles of the individual factors. In

this case M is a Harish-Chandra module for the pair (D̂er(C/X),Aut(C/X)). Moreover,



ORBIFOLD CONFORMAL BLOCKS AND THE STACK OF POINTED G-COVERS 19

the Lie algebroid extension

0 #→ O
M̂G

g,n
#→ D̂er(C/X) ⊗ O

M̂G
g,n

#→ Der(C/X) ⊗ O
M̂G

g,n
#→ 0

splits over the kernel of the anchor map, as the Virasoro cocycle is trivial on VectG(C\O(q)).

Applying the machinery of section 6 with l̂ = U(M) ⊗ O
M̂G

g,n
and l̃ = UG(V )out., we

obtain a module HG
V (M) for a sheaf of twisted differential operators on MG

g,n(m), whose

fiber at (π : C #→ X,p,q) is HG
V (C,X,p,q, M).

Definition 7.1. Denote by ∇KZ the connection on HG
V (M) coming from the D–module

structure.

8. The orbifold KZ connection in the direction of X fixed.

In this section we give a formula for the orbifold KZ connection along the fibers of
the projection

κ : MG
g,n(m) #→ Mg

sending (C,X,p,q) to X i.e., this amounts to fixing the base curve X. We begin by
introducing some notation. Fix m = (m1, · · · ,mn) and M = (M1, · · · ,Mn) as before,
and let

M = M1 ⊗ · · · ⊗ Mn

Let Der(O) denote the Lie algebra generated by {zk∂z}, k ≥ 0, and and DerN (O) the

one generated by {zk+ 1
N ∂

z
1
N
}, k ≥ −1. Under the homomorphism 4.3, these two Lie

algebras are isomorphic. We have

Der(o)(O) ⊂ Der(O) Der(o)N (O) ⊂ DerN (O)

Let
Der(C/X,O) = DerN1(O) × · · ·× DerNn(O).

We now wish to consider the two Harish-Chandra pairs (Der(O),Aut(O)) and
(DerN (O),AutN (O)). As explained in [FB], the action of the pair (Der(O),Aut(O)) is

simply transitive along the fibers of the projection M̂g,1 #→ Mg (and a similar statement
applies in the case of multiple points). From the fact that the map

η : M̂G
g,n #→ M̂g,n

has finite fibers, and that the two Harish-Chandra pairs (Der(O),Aut(O)) and
(DerN (O),AutN (O)) are isogenous, we can deduce that the action of the pair
(Der(C/X,O),Aut(C/X,O)) along the fibers of the map

κ ◦ ξ : M̂G
g,n #→ Mg

is also simply transitive. Let

MG
X,n(m) = κ−1(X) ∩ MG

g,n(m)

and

M̂G
X,n(m) = (κ ◦ ξ)−1(X) ∩ M̂G

g,n(m)
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and let

H̃G
V (M,X) = M̂G

X,n(m) ×
Aut(C/X)

M .

We deduce that along MG
X,n(m), the connection ∇KZ on HG

V (M) lifts to the sheaf

H̃G
V (M,X), and an explicit formula in local coordinates can be obtained.
Choose coordinates zi around pi. Since the map p is quasi-finite, the zi therefore

define coordinates on κ−1(X). Choose compatible special coordinates z
1

Ni
i at qi which

are Ni–th roots of the zi. zi induces coordinates zi −wi at points near pi, and likewise,

the choice of Ni–th root z
1

Ni
i at qi induces a family of Ni–th roots of zi − wi, which

we denote (zi − wi)
1

Ni . We can thus trivialize H̃G
V (M,X) in a neighborhood W of

(C,X,p,q):

ι : M×W #→ H̃G
V (M,X)

(A1 ⊗ · · · ⊗ An, w1, · · · , wn) #→ [A1, (z1 − w1)
1

N1 ] ⊗ · · ·⊗ [An, (zn − wn)
1

Nn ]

and similarly, we obtain a trivialization ι∗ of H̃G
V (M,X)∗. We have the following theo-

rem:

Theorem 8.1. Along, MG
X,n(m), the orbifold KZ connection ∇KZ on HG

V (M) lifts to

H̃G
V (M,X), and in the trivialization ι, is given in the local coordinates zi by

∇∂zi
= ∂zi + LMi

−1

where LMi
−1 is the −1-st Virasoro operator acting on Mi.

Note: The vector field responsible for translations along the curve X is ∂z. Observe
that under the homomorphism 4.3, we have

µ−1
N (∂z) = 1/Nz−1+1/N∂

z
1
N

It follows that 1/Nz−1+1/N∂
z

1
N

is precisely the vector field responsible for moving the

ramification points of the map π : C #→ X along X. Note that in general, its action on

M̂G
g,n will change the complex structure of the cover C.
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