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Abstract. We associate to a projective n-dimensional toric variety X∆ a pair of co-

commutative (but generally non-commutative) Hopf algebras Hα
X , HT

X . These arise as

Hall algebras of certain categories Cohα(X),CohT (X) of coherent sheaves on X∆ viewed

as a monoid scheme - i.e. a scheme obtained by gluing together spectra of commu-

tative monoids rather than rings. When X is smooth, the category CohT (X) has an

explicit combinatorial description as sheaves whose restriction to each An correspond-

ing to a maximal cone is determined by an n-dimensional generalized skew shape. The

(non-additive) categories Cohα(X),CohT (X) are treated via the formalism of proto-

exact/proto-abelian categories developed by Dyckerhoff-Kapranov.

The Hall algebras Hα
X , HT

X are graded and connected, and so enveloping algebras

Hα
X ' U(nαX), HT

X ' U(nTX), where the Lie algebras nαX , nTX are spanned by the inde-

composable coherent sheaves in their respective categories.

We explicitly work out several examples, and in some cases are able to relate nTX to

known Lie algebras. In particular, when X = P1, nTX is isomorphic to a non-standard

Borel in gl2[t, t
−1]. When X is the second infinitesimal neighborhood of the origin inside

A2, nTX is isomorphic to a subalgebra of gl2[t]. We also consider the case X = P2, where

we give a basis for nTX by describing all indecomposable sheaves in CohT (X).
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1. Introduction

Let X = X∆ be a projective toric variety defined by a fan ∆. In this paper we attach to
X a pair of co-commutative Hopf algebras (in fact, enveloping algebras) Hα

X , H
T
X . These

arise as Hall algebras of certain categories of coherent sheaves Cohα(X),CohT (X) to be
defined below. In order to define these, we viewX∆ not as an ordinary variety, but rather as
amonoid scheme - a space obtained by gluing together the spectra of commutative monoids
rather than rings. One particular feature of this setting is that the category of coherent
sheaves is no longer abelian, or even additive, and has an explicitly combinatorial flavor.
Our constructions may be viewed within the general philosophy of algebraic geometry over
F1 - the "field" of one element. In the rest of this introduction we briefly recall Hall
algebras of Fq-linear finitary categories and their connections to quantum groups, discuss
how Dyckerhoff-Kapranov’s formalism of proto-exact categories allows one to treat Hall
algebras of non-additive categories, and how our construction may conjecturally be used to



TORIC HALL ALGEBRAS AND INFINITE-DIMENSIONAL LIE ALGEBRAS 3

compute the classical limit of Hall algebras of toric varieties of dimension two and beyond.
For an introduction to Hall algebras and their applications in representation theory, we
refer the interested reader to the excellent review [33].

1.1. Hall algebras of finitary abelian categories and quantum groups. An abelian
(or exact) category A is called finitary if Hom(M,N) and Ext1(M,N) are finite sets for
any pair of objects M,N ∈ A. Two examples of such are Rep(Q,Fq) - the category of
representations of a quiver Q over Fq, and Coh(X) - the category of coherent sheaves on
a projective variety X over Fq. One may associate to A a pair of associative algebras
HA, H̃A [32]. Letting Iso(A) denote set of isomorphism classes of objects in A, denoting
by [M ] the isomorphism class of M ∈ A, let

HA := {f : Iso(A)→ C | f has finite support }

with associative multiplication

(1.1) f • g([M ]) =
∑
N⊂M

f([M/N ])g([N ])

where the summation is over all sub-objects N ⊂M . It follows that

δ[M ] • δ[N ] =
∑

[K]∈Iso(A)

gKM,Nδ[K]

where

gKM,N = |{L ⊂ K|L ' N,K/L 'M}|,

and so gKM,N |Aut(M)||Aut(N)| counts the number of isomorphism classes of short exact
sequences

0→ N → K →M → 0.

To connect Hall algebras to quantum groups one needs to twist the multiplication in
HA by the multiplicative Euler form

〈M,N〉m :=

√√√√ ∞∏
i=0

|Exti(M,N)|(−1)i

by introducing the new product

f ? g([M ]) =
∑
N⊂M

〈M/N,N〉mf([M/N ])g([N ]),

as well as extend it by C[K0(A)] (the group algebra of the Grothendieck group). One
thereby obtains a new algebra H̃A defined over Q(

√
q) when A is Fq-linear. If A is heredi-

tary, H̃A may be equipped with a topological bialgebra structure using the so-called Green’s
co-multiplication [19].
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For a quiver Q, and A = Rep(Q,Fq), there is an embedding U+
ν (gQ) ↪→ H̃A, where

the former denotes the positive half of the quantized enveloping algebra of gQ - the Kac-
Moody algebra withQ as its Dynkin diagram, specialized at ν =

√
q. WhenA = Coh(P1

Fq),
Kapranov [24] and Baumann-Kassel [1] show that there is an embedding U+

ν (ŝl2) ↪→ H̃A,
where the former is a certain positive subalgebra of the quantum affine algebra of sl2.
The Hall algebras of elliptic curves have been studied by Burban-Schiffmann, Schiffmann,
and Schiffmann-Vasserot [2,34,35], and shown to be connected with DAHA (Double affine
Hecke algebras) as well as a number of other representation-theoretic objects. Hall algebras
of higher-genus projective curves were studied in [25].

There is an extensive body of work connecting Hall algebras, geometric representation
theory, the study of moduli spaces of sheaves/quiver representations, and the Langlands
program which we cannot possibly summarize here. We mention only that understanding
variants of the Hall algebra H̃Coh(X) when dim(X) > 1 is an important and difficult
problem (see for instance the work of Kapranov-Vasserot [26,27] ).

1.2. Hall algebras in the non-additive setting. An examination of the product (1.1)
reveals that the requirement that A be abelian or even additive is unnecessary. In [17]
Dyckerhoff-Kapranov introduce proto-exact categories. These are generalizations of Quillen
exact categories which satisfy a minimal set of axioms designed to yield an associative
product via (1.1) whenever they are finitary.

Many non-additive examples of proto-exact categories come from combinatorics. Here, A
typically consists of combinatorial structures equipped an operation of "collapsing" a sub-
structure, which corresponds to forming a quotient in A. Examples of such A include trees,
graphs, posets, matroids, semigroup representations on pointed sets, quiver representations
in pointed sets etc. (see [18, 28, 38–41] ). The product in HA, which counts all extensions
between two objects, thus amounts to enumerating all combinatorial structures that can
be assembled from the two. In this case, HA is (dual to) a combinatorial Hopf algebra in
the sense of [31]. Many combinatorial Hopf algebras arise via this mechanism.

1.3. F1, Hall algebras, and classical limits. It’s an old observation that many com-
binatorial problems over Fq have well-defined limits as q → 1, in which they reduce to
analogous problems about finite sets. This is well illustrated by the example of the Grass-
mannian, where the number of Fq-points is given by a q-binomial coefficient:

# Gr(k, n)/Fq =
[n]q!

[n− k]q![k]q!

with

[n]q! = [n]q[n− 1]q . . . [2]q
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and

[n]q = 1 + q + q2 + . . .+ qn−1.

In the limit q → 1 this reduces to the binomial coefficient
(
n
k

)
, counting k-element subsets

of an n-element set. Another famous observation due to Tits is that if G is a simple
algebraic group of adjoint type, and we denote by |G(Fq)| the number of points of G over
Fq, then (suitably normalized)

lim
q→1
|G(Fq)| = |W (G)|,

where W (G) is the Weyl group of G.
Finding a meaningful unifying framework for these and other observations has led to at-

tempts to define mathematics over F1 - "the field of one element". We refer the interested
reader to the review [29]. In its most pedestrian form, the yoga of F1 states that a vector
space over F1 is a pointed set, and monoids are the analogues of algebras. These struc-
tures are manifestly "non-additive". One version of algebraic geometry over F1 developed
by Deitmar [12–14], Kato [23], Soulé [36], Connes-Consani-Marcolli [5–7], and Cortinas-
Haesemayer-Walker-Weibel [8], is the theory of monoid schemes. These are spaces glued
from spectra of commutative monoids and equipped with a structure sheaf of monoids,
much as ordinary schemes are glued from spectra of commutative rings.

One may ask how the q → 1 limit behaves at the level of Hall algebras, where such a
comparison makes sense. For instance, when Q is a quiver, we can try to compare the Hall
algebras of the categories Rep(Q,Fq) and Rep(Q,F1). Similarly, if X is a projective toric
variety (which in particular implies that it arises via base change from a monoid scheme),
we may try to compare the Hall algebras of Coh(XFq) and Coh(XF1). The results in [39,40]
suggest that the Hall algebras computed in the F1 world are (possibly degenerate) q → 1

(i.e. "classical") limits of their Fq analogues. By doing calculations in the F1 world we
may thus hope to learn something about the Hall algebras of Coh(X) when dim(X) > 1,
where little is known.

A rationale for why computations over F1 are related to classical limits is explored in
[10]. For instance, a two-dimensional vector space over a field may be viewed as Qbit,
where superposition of quantum states is allowed, whereas a two-dimensional vector space
over F1 corresponds to a classical bit, the two elements corresponding to 0, 1.

1.4. Summary of main results. Let ∆ ⊂ Rn be a fan (in the sense of toric geometry).
∆ defines a family of commutative monoids and data for gluing their spectra, to obtain a
monoid scheme (X∆,OX). The category of coherent sheaves Coh(X), defined in a manner
analogous to ordinary algebraic geometry, is now non-additive. Paraphrased, our first
result is:
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Theorem (Proposition 3.13). Coh(X) has the structure of a proto-exact category in the
sense of Dyckerhoff-Kapranov.

This means that one can define exact sequences and Ext, and that Coh(X) has an
associated algebraic K-theory defined via the Waldhausen construction. There is however
an obstacle to defining the Hall algebra HCoh(X), since the category Coh(X) is not finitary
even when ∆ is the fan of a smooth projective toric variety such as say Pn. To overcome
this difficulty we define subcategories

CohT (X) ⊂ Cohα(X) ⊂ Coh(X)

The subcategory Cohα(X) consists of coherent sheaves F having the property that the
action of the monoid structure sheaf OX on F is sufficiently nice, and contains all locally
free sheaves. More precisely, we require that multiplication by a section of the structure
sheaf not identify two distinct sections of F unless these get sent to 0. This turns out to
eliminate the problem of non-finitarity and allows us to define a Hall algebra:

Theorem (Theorem 4.12). Let ∆ be the fan of a projective toric variety, and (X∆,OX)

the corresponding monoid scheme. Then

(1) Cohα(X∆) is a finitary proto-abelian category.
(2) The Hall algebra HCohα(X∆) is isomorphic, as a Hopf algebra, to an enveloping

algebra U(nαX), where nαX has the indecomposable sheaves in Cohα(X∆) as a basis.

We note that the standard cohomological machinery available for abelian categories
of coherent sheaves on ordinary schemes has yet to be developed in the F1 world. We
prove the above theorem by identifying Ext(F ,F ′) for F ,F ′ ∈ Cohα(X) with a subset of
Ext1

Coh(X∆,k)(Fk,F ′k) where k is a finite field, X∆,k denotes the ordinary toric variety over
k associated to ∆, and Fk the scalar extension (k-linearization) of the sheaf F .

We may further refine the class of coherent sheaves under consideration by passing to a
subcategory CohT (X) ⊂ Cohα(X) of sheaves locally (on affines corresponding to maximal
cones σ ⊂ ∆) admitting a grading by Sσ - the semigroup associated to σ. When X is
smooth (in particular, each Sσ ' Zn≥0 ), such sheaves are shown to be glued from "skew
shapes". Here by a skew shape we mean a convex sub-poset of Zn≥0 under the partial order
where (x1, · · · , xn) ≤ (y1, · · · , yn) if and only if xi ≤ yi for i = 1, · · · , n, considered up to
translation. For example, when n = 2, the infinite shape

...
...

• · · ·
• · · ·
• · · ·
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carries an action of the free commutative monoid F1〈x1, x2〉 generated by x1, x2, with x1

moving one box to the right, and x2 one box up, until the edge of the diagram is reached,
and 0 beyond that. This yields a module on three generators (indicated by black dots),
which may be interpreted as describing a coherent sheaf on A2 supported on the union of
the x1 and x2-axes. Similarly, the three-dimensional infinite plane partition

describes an object of CohT (A3) supported on the union of the three coordinate axes.
Since CohT (X) is a full subcategory of Cohα(X), it is finitary whenever ∆ is the fan of

a projective toric variety, and we may consider its Hall algebra HT
X , which is a quotient

of Hα
X by the Hopf ideal of all sheaves which are not in CohT (X), and therefore itself an

enveloping algebra U(nTX). We show:

Theorem (Theorem 5.18). Let ∆ be the fan of a projective toric variety, and (X∆,OX)

the corresponding monoid scheme. Then

(1) CohT (X∆) is a finitary proto-abelian category.
(2) The Hall algebra HCohT (X∆) is isomorphic, as a Hopf algebra, to an enveloping

algebra U(nTX), where nTX has the indecomposable sheaves in CohT (X∆) as a basis.

In addition to CohT (X), we also consider subcategories CohT (X)Z ⊂ CohT (X) of
sheaves supported in a closed subset Z ⊂ X, and CohT (X)I ⊂ CohT (X) of sheaves
scheme-theoretically supported in a closed subscheme determined by a quasicoherent sheaf
of ideals I ⊂ OX . These are also proto-abelian, and finitary whenever CohT (X) is, allowing
us to define Hall algebras.

The last section of the paper is devoted to computing the Hall Lie algebra nTX for
various monoid schemes X, and whenever possible, relating these to previously studied
Lie algebras such as loop algebras. In non-trivial examples, the Lie algebras nTX are large
infinite-dimensional Lie algebras whose complexity grows rapidly with dim(X).
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• WhenX = P1, nTX was computed by the second author in [39], where the problem of
Hall algebras of monoid schemes was first considered. It was shown to be isomorphic
to a non-standard Borel subalgebra in gl2[t, t−1].
• The Hall algebra of the category CohT (An)0 of point sheaves supported at the
origin in An was studied in [42] and described in terms of a Lie algebra of skew
shapes.
• We compute the Hall algebra of the subcategory of CohT (A2) consisting of sheaves
supported on the second infinitesimal neighborhood of the origin, and show that
its Hall Lie algebra embeds into gl2[t].
• We consider a certain subcategory of CohT (A2)0 generated by skew shapes having
at most two rows and show its Hall Lie algebra embeds into gl∞[t].
• We produce an explicit basis for the Hall Lie algebra of CohT (P2) by classifying all
indecomposable T -sheaves on P2, and show that the Lie subalgebra generated by
line bundles supported on the triangle of P1’s surjects onto g̃l

−
∞, where the latter

denotes lower-triangular Z× Z matrices.

1.5. Acknowledgements. J.J. was supported by an AMS-Simons travel grant. M.S.
is grateful to Olivier Schiffmann for many valuable conversations and suggestions, and
to Tobias Dyckerhoff for answering several questions regarding the formalism of proto-
exact/proto-abelian categories. He also gratefully acknowledges the support of a Simons
Foundation Collaboration Grant during the writing of this paper.

2. Proto-exact categories and their Hall algebras

In this section we review the notions of proto-exact and proto-abelian categories and
their Hall algebras introduced in [16,17].

2.1. Proto-exact and proto-abelian categories. A commutative square

(2.1)
X Y

X ′ Y ′

i

j j′

i′

is said to be biCartesian if it is both Cartesian and co-Cartesian.

Definition 2.1. A proto-exact category is a pointed category C equipped with two special
classes of morphisms M and E, called admissible monomorphisms and admissible epimor-
phisms respectively. The triple (C,M,E) is required to satisfy the following properties.

(1) Any morphism 0→ A is in M and any morphism A→ 0 is in E.
(2) The classes M and E are closed under composition and contain all isomorphisms.
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(3) A commutative square (2.1) in C with i, i′ ∈ M and j, j′ ∈ E is Cartesian if and
only if it is co-Cartesian.

(4) Every diagram of the following form

X Y

X ′

i

j

with i ∈M and j ∈ E can be completed to a biCartesian square (2.1) with i′ ∈M

and j′ ∈ E.
(5) Every diagram of the following form

Y

X ′ Y ′

j′

i′

with i′ ∈M and j′ ∈ E can be completed to a biCartesian square (2.1) with i ∈M

and j ∈ E.

Remark 2.2. If M is the class of all monomorphisms in C and E is the class of all
epimorphisms in C, then C is said to be a proto-abelian category [16].

A biCartesian square of the following form

X Y

0 Z

i

j j′

i′

with i, i′ ∈M and j.j′ ∈ E is said to be an admissible short exact sequence or an admissible
extension of Z by X, and will also be denoted

(2.2) X ↪→ Y � Z.

In this case we will frequently denote the object Z (unique up to isomorphism) by Y/X.
Two extensions X ↪→ Y � Z and X ↪→ Y ′ � Z of Z by X are equivalent if there is a

commutative diagram as follows:

(2.3)
X Y Z

X Y ′ Z

id ∼= id

The set of equivalence classes of such sequences is denoted ExtC(Z,X). We will assume
that C has the following additional properties:
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(1) C has finite coproducts, which we denote by X ⊕ Y . This, together with the fact
that C is pointed, implies that there exist morphisms πX : X ⊕ Y 7→ X and
πY : X ⊕ Y 7→ Y such that the composition

X 7−→ X ⊕ Y πX7−→ X

is idX , and the composition

X 7−→ X ⊕ Y πY7−→ Y

is 0.
(2) The map X 7→ X ⊕ Y is in M, and πX ∈ E

A short exact sequence equivalent to one of the form

X ↪→ X ⊕ Y � Y

will be called a split exact sequence.

Definition 2.3. Two admissible monomorphisms i1 : X ↪→ Y and i2 : X ′ ↪→ Y are iso-
morphic if there is an isomorphism f : X → X ′ with i1 = i2 ◦ f . The isomorphism classes
in M are admissible sub-objects.

Definition 2.4. A functor F : C → D between proto-exact categories is exact when it
preserves admissible short exact sequences.

Definition 2.5. A proto-exact category (C,M,E) is finitary if, for every pair of objects
X and Y , the sets HomC(X,Y ) and ExtC(X,Y ) are finite.

Example 2.6. The following are examples of proto-exact categories.

(1) Any Quillen exact category is proto-exact, with the same exact structure. In
particular, any Abelian category C is proto-exact with M all monomorphisms and
E all epimorphisms respectively. The category Rep(Q,Fq) of representations of a
quiver Q over a finite field Fq and the category Coh(X/Fq) of coherent sheaves on
a projective variety X over Fq are both finitary Abelian.

(2) The category of pointed sets and pointed maps, withM(X,Y ) all pointed injections
X ↪→ Y , and E(X,Y ) all pointed surjections f : X � Y satisfying

(2.4) f |X\f−1(∗) is an injection ,

is proto-exact. The full subcategory Setfin• of finite pointed sets is finitary. The
category Vect(F1) of finite pointed sets together with all pointed maps satisfying
the condition (2.4) is proto-abelian and finitary. It is a non-full subcategory of
Setfin• .

(3) The category Mat• of pointed matroids and strong maps is finitary proto-exact
[18].
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(4) Suppose I is a small category, C proto-exact, and Fun(I, C) the category of functors
from I to C, with natural transformations as morphisms. Fun(I, C) is proto-exact
(see [17]), with
• M(F,G) = { natural transformations φ : F ⇒ G | φX : F (X) 7→ G(X) ∈
M(F (X), G(X))}
• E(F,G) = { natural transformations φ : F ⇒ G | φX : F (X) 7→ G(X) ∈
E(F (X), G(X))}

If C is proto-abelian, then Fun(I, C) is proto-abelian.
(5) As a special case of the previous example, a monoid A (see Section 3.1) can be

viewed as a category with one object {?}, and A = Hom(?, ?). The category
Fun(A,Setfin• ) is then equivalent to the category ModA of A-modules (or A-acts),
whose objects are finite pointed sets with an action of A. By the previous example,
ModA is proto-exact, where for M,N ∈ ModA

• M(M,N) = {φ ∈ HomModA
(M,N) | φ is injective }

• E(M,N) = {φ ∈ HomModA
(M,N) | φ is a surjection satisfying (2.4)}

Similarly, the category Fun(A,Vect(F1)) is proto-abelian, and may be identified
with the category of type-α modules ModαA in Section 4.1. Specializing further, de-
noting by P (Q) the path monoid of a quiver Q, we obtain a proto-abelian category
Rep(Q,F1) := Fun(P (Q),Vect(F1)) of quiver representations over F1 considered in
[40].

2.2. Hall algebras of finitary proto-exact categories. Let C be a finitary proto-exact
category, and k a field of characteristic zero. Define the Hall algebra HC over k as

HC := {f : Iso(C)→ k | f has finite support},

where Iso(C) denotes the set of isomorphism classes in C. The Hall algebra HC is an
associative k–algebra under the convolution product

(2.5) f • g([X]) :=
∑
X′⊆X

f([X/X ′])g([X ′]),

where the summation
∑

X′⊆X is taken over isomorphism classes of admissible sub-objects
i : X ′ ↪→ X, i ∈M, and [−] denotes isomorphism classes in C. The algebra HC has a basis
of δ-functions

{
δ[X] : [X] ∈ Iso(C)

}
, where

δ[X]([X
′]) =

1 X ′ ' X,

0 otherwise.

The multiplicative unit of HC is δ[0]. The structure constants of this basis are given by

δ[X] • δ[Y ] =
∑

[Z]∈Iso(C)

gZX,Y δ[Z],
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where
gZX,Y = #{Z ′ ⊆ Z | Z ′ ' Y,Z/Z ′ ' X}.

Thus gZX,Y counts the number of admissible subobjects Z ′ of Z isomorphic to Y such that
Z/Z ′ is isomorphic to X.

Whether HC carries a co-multiplication compatible with (2.5) depends on further prop-
erties of C. If C is finitary, Abelian, linear over Fq, and hereditary, then HC carries the
so-called Green’s co-multiplication (see [19]). We will be concerned with situations where
C is not additive, but where a simpler alternative construction applies. To this end we
assume that C has the following additional property:

(3) The only admissible sub-objects of X ⊕ Y are of the form X ′ ⊕ Y ′, where X ′ ⊆
X,Y ′ ⊆ Y .

We note that the categories Set• and Mat• satisfy properties above (1)− (3), but that
(3) generally fails for Abelian categories. Define

(2.6) ∆: HC → HC ⊗HC , ∆(f)([X], [Y ]) 7→ f([X ⊕ Y ]).

Under the assumptions (1) − (3) on C, ∆ is easily seen to equip HC with a bialgebra
structure. ∆ is co-commutative by (2.6), since [X ⊕ Y ] = [Y ⊕ X], and the subspace of
primitive elements (i.e. those satisfying ∆(x) = x⊗ 1 + 1⊗ x) of HC is spanned by the set
of all δ[X] for X indecomposible (i.e. those X’s which cannot be written as a non-trivial co-
product). Furthermore, HC is naturally graded byK0(C)+ ⊆ K0(C), whereK0(C)+ denotes
the sub-semigroup generated by the effective classes, with deg(δ[X]) = [X] ∈ K0(C)+. As
any graded, connected, and co-commutative bialgebra is a Hopf algebra isomorphic to
the enveloping algebra of the Lie algebra of its primitive elements by the Milnor-Moore
theorem. We thus have the following([18]):

Proposition 2.7. Let C be a finitary proto-exact category C satisfying additional properties
(1)− (3) above. Then HC has the structure of a K+

0 (C)-graded, connected, co-commutative
Hopf algebra over k with co-multiplication (2.6). Moreover HC is isomorphic as a Hopf
algebra to the enveloping algebra U(nC), where nC is a K+

0 (C)-graded Lie algebra with basis
δ[X], with X indecomposable.

We will refer to nC as the Hall Lie algebra of C.

Example 2.8. Consider the category C := Vect(F1). Coproducts in Vect(F1) correspond
to wedge sums, and Vect(F1) is easily seen to satisfy the conditions of Proposition 2.7. We
have HC ' k[x], with

∆(x) = x⊗ 1 + 1⊗ x,

where x = δ{e,∗} is the delta-function supported on the pointed set with one non-zero
element e.
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Example 2.9. Let 〈t〉 denote the free monoid on the generator t, and let C denote the
category of nilpotent 〈t〉-modules. Indecomposable objects of C may be identified with
rooted trees (see Example 4.3). HC is isomorphic to the dual of the Connes-Kreimer Hopf
algebra of rooted trees [9, 41].

Example 2.10. Let Q0 be the Jordan quiver, and let C = Rep(Q0,F1)nil be the category
of nilpotent representations of Q0 over F1 (see [40]). The Hall algebra HC is isomorphic
as a Hopf algebra to the ring Λ of symmetric functions. Under this isomorphism, the
indecomposible objects in C correspond to the power sum symmetric functions in Λ.

Example 2.11. When C = Mat•, HC is isomorphic to the dual of Schmitt’s matroid-minor
Hopf algebra ([18,37]).

3. Monoid schemes

In this section, we briefly review notions pertaining to monoid schemes and quasicoherent
sheaves on them. The theory of monoid schemes was developed by Kato [23], Deitmar
[12–14], Connes-Consani-Marcolli [5–7], and Cortinas-Haesemayer-Walker-Weibel [8]. We
refer the interested reader to the first few sections of [8] for a concise summary.

3.1. Monoids and MSpec. Recall that ordinary schemes are ringed spaces locally mod-
eled on affine schemes, which are spectra of commutative rings. A monoid scheme is
locally modeled on an affine monoid scheme, which is the spectrum of a commutative uni-
tal monoid with 0. In the following, we will denote monoid multiplication by juxtaposition
or ·. In greater detail:

A monoid A will be a commutative associative monoid with identity 1A and zero 0A

(i.e. the absorbing element). We require

1A · a = a · 1A = a, 0A · a = a · 0A = 0A, ∀a ∈ A.

Maps of monoids are required to respect the multiplication as well as the special elements
1A, 0A. An ideal of A is a subset a ⊂ A such that a · A ⊂ a. An ideal p ⊂ A is prime if
xy ∈ p implies either x ∈ p or y ∈ p, and maximal if it is not properly contained in another
proper ideal. Maximal ideals are prime, and every monoid A contains a unique maximal
ideal m - the complement of the unit elements.

Given a monoid A, the topological space MSpecA is defined to be the set

MSpecA := {p | p ⊂ A is a prime ideal },

with the closed sets of the form

V (a) := {p | a ⊂ p, p prime },
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together with the empty set. Given a multiplicatively closed subset S ⊂ A, the localization
of A by S, denoted S−1A, is defined to be the monoid consisting of symbols

{a
s
| a ∈ A, s ∈ S},

with the equivalence relation

a

s
=
a′

s′
⇐⇒ ∃ s′′ ∈ S such that as′s′′ = a′ss′′,

and multiplication is given by a
s ×

a′

s′ = aa′

ss′ .
For f ∈ A, let Sf denote the multiplicatively closed subset {1, f, f2, f3, · · · }. We denote

by Af the localization S−1
f A, and byD(f) the open set MSpecA\V (f) ' MSpecAf , where

V (f) := {p ∈ MSpecA | f ∈ p}. The open setsD(f) form a basis for MSpecA. MSpecA is
equipped with a structure sheaf of monoids OA, satisfying the property Γ(D(f),OA) = Af .
Its stalk at p ∈ MSpecA is Ap := S−1

p A, where Sp = A\p.
A unital homomorphism of monoids φ : A → B is local if φ−1(B×) ⊂ A×, where A×

(resp. B×) denotes the invertible elements in A (resp. B). A monoidal space is a pair
(X,OX) where X is a topological space and OX is a sheaf of monoids. A morphism of
monoidal spaces is a pair (f, f#) where f : X → Y is a continuous map, and f# : OY →
f∗OX is a morphism of sheaves of monoids, such that the induced morphism on stalks
f#
p : OY,f(p) → f∗OX,p is local. An affine monoid scheme is a monoidal space isomorphic
to (MSpecA,OA). Thus, the category of affine monoid schemes is opposite to the category
of monoids. A monoidal space (X,OX) is called a monoid scheme, if for every point x ∈ X
there is an open neighborhood Ux ⊂ X containing x such that (Ux,OX |Ux) is an affine
monoid scheme. A monoid scheme is said to be of finite type if it has a finite covering by
spectra of finitely generated monoids. All monoid schemes appearing in this paper will
be of finite type, and we make this assumption going forward. We denote by Msch the
category of monoid schemes.

Example 3.1. Let F1 = {0, 1}, with multiplication defined by

1 · 1 = 1, 1 · 0 = 0 · 1 = 0 · 0 = 0.

One can easily see that F1 is the initial object in the category of monoids. F1 is sometimes
referred to as the field with one element.

The following example plays a role of the polynomial rings in our setting.

Example 3.2. Let F1〈x1, . . . , xn〉 := {xk1
1 x

k2
2 · · ·xknn | ki ∈ Z≥0}∪ {0} be the set of mono-

mials in variables x1, . . . , xn along with an extra element 0. With the usual multiplication of
monomials and 0·xk1

1 x
k2
2 · · ·xknn = xk1

1 x
k2
2 · · ·xknn ·0 = 0, F1〈x1, . . . , xn〉 is a monoid. We will

frequently use the multi-index notation to write elements in F1〈x1, . . . , xn〉. For instance,
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with a = (a1, . . . , an) ∈ Zn≥0, we write xa := xa1
1 x

a2
2 · · ·xann . Obviously, F1〈x1, . . . , xn〉 is a

commutative monoid.

Example 3.3. Let
〈t〉 := F1〈t〉 = {0, 1, t, t2, · · · , tn, · · · },

and let A1 := MSpec 〈t〉 - the monoid affine line. Let 〈t, t−1〉 be the following monoid

〈t, t−1〉 := {· · · , t−2, t−1, 1, 0, t, t2, · · · }.

We obtain the following diagram of inclusions

〈t〉 ↪→ 〈t, t−1〉 ←↩ 〈t−1〉.

By taking spectra, and denoting by U0 = MSpec 〈t〉, U∞ = MSpec 〈t−1〉, we obtain the
following diagram

A1 ' U0 ←↩ U0 ∩ U∞ ↪→ U∞ ' A1.

We define P1, the monoid projective line, to be the monoid scheme obtained by gluing two
copies of A1 according to the maps in the above diagram. P1 has three points - two closed
points 0 ∈ U0, ∞ ∈ U∞, and the generic point η. We denote the corresponding inclusions
by ι0 : U0 ↪→ P1, ι∞ : U∞ ↪→ P1.

3.2. Coherent sheaves.

3.2.1. A-modules. Let A be a monoid. An A–module is a pointed set (M, ∗M ) together
with an action

µ : A×M →M, (a,m) 7→ a ·m

which is compatible with the monoid multiplication; 1A ·m = m, a · (b ·m) = (a ·b) ·m, and
0A ·m = ∗M ∀m ∈M . We will refer toM\∗M as non-zero elements, and to ∗M as the zero
element, sometimes denoting it by 0. A morphism of A–modules f : (M, ∗M ) → (N, ∗N )

is a map of pointed sets (i.e. we require f(∗M ) = ∗N ) which is compatible with the action
of A; f(a ·m) = a · f(m). We denote by ModA the category of A-modules.

A pointed subset (M ′, ∗M ) ⊂ (M, ∗M ) is called an A–submodule if A ·M ′ ⊂M ′. In this
case we may form the quotient moduleM/M ′, whereM/M ′ := M\(M ′\∗M ), ∗M/M ′ = ∗M ,
and the action of A is defined by setting

a ·m =

{
a ·m if a ·m /∈M ′

∗M/M ′ if a ·m ∈M ′

where m is an element m inM considered as an element ofM/M ′. IfM is finite, we define
|M | = #M − 1, i.e. the number of non-zero elements.

In the language of Section 2.1, the category ModA is equivalent to the category of
functors Fun(A,Setfin• ), where A is viewed as a one-object category, and is therefore
proto-exact (see Example 2.6 ).
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Remark 3.4. It will be useful in future discussions to make explicit the proto-exact
structure of ModA, i.e. to have an explicit description of the objects completing the
biCartesian diagrams in Definition 2.1. We begin by noting that all morphisms in E are of
the form X � X/V , where V ⊂ X is a sub-module, and all morphisms in M are pointed
inclusions V ↪→ X.

• For the diagram appearing in Definition 2.1(4), we may identify j : X � X ′ with
j : X � X/V . Y ′ can then be identified with Y/i(V ), where all the maps are the
obvious ones.
• For the diagram appearing in Definition 2.1(5), X can then be identified with
j′−1(i′(X ′)), where again all the maps are the obvious ones.

The admissible exact sequences in ModA are thus all isomorphic to ones of the form:

V ↪→ X � X/V

where V ⊂ X is a sub-module.

The following is an immediate consequence of Remark 3.4

Proposition 3.5. Let C be a full subcategory of ModA containing the 0 module, and closed
under taking sub-modules and quotients. Then C is proto-exact with the induced structure.

ModA has the following additional properties:

(1) ModA has a zero object ∅, namely the one-element pointed set {∗}.
(2) A morphism f : (M, ∗M ) → (N, ∗N ) has a kernel (f−1(∗N ), ∗M ) and a cokernel

N/ Im(f) which satisfy the usual universal properties.
(3) ModA has coproducts: M ⊕ N := M ∨ N := (M t N)/〈∗M ∼ ∗N 〉 which we will

call “direct sum”.
(4) If L ⊂M ⊕N is an A–submodule, then L = (L ∩M)⊕ (L ∩N).
(5) ModA has a symmetric monoidal structure M ⊗A N := M ∧A N := M × N/ ∼,

where ∼ is the equivalence relation generated by (a ·m,n) ∼ (m, a · n).
(6) ⊕,⊗ satisfy the usual associativity and distributivity properties.

M is said to be free of rank n if M ' ⊕ni=1A and finitely generated if there exists a
surjection ⊕ni=1A � M of A–modules for some n. In other words, this means that there
exist m1, · · · ,mn ∈ M such that for every m ∈ M , m = a ·mi for some 1 ≤ i ≤ n, and
we call the mi generators. We denote by ModfgA the full subcategory of ModA consisting
of finitely generated modules.

For an element m ∈M , define

AnnA(m) := {a ∈ A | a ·m = ∗M}.
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This is an ideal in A, and 0A ⊂ AnnA(m) ∀m ∈ M . An element m ∈ M is said to be
torsion if AnnA(m) 6= 0A. The subset of all torsion elements in M is an A–submodule,
called the torsion submodule of M , and denoted Mtor. An A–module M is torsion-free if
Mtor = {∗M} and torsion if Mtor = M . We define the ideal AnnA(M) by

AnnA(M) =
⋂
m∈M

AnnA(m) ⊂ A.

We note that every M ∈ ModA can be uniquely written M = Mtor ⊕Mtf , where Mtf is
torsion-free.

Given a multiplicatively closed subset S ⊂ A and an A–module M , we may form the
S−1A–module S−1M , where

S−1M := {m
s
| m ∈M, s ∈ S}

with the following equivalence relation

m

s
=
m′

s′
⇐⇒ ∃ s′′ ∈ S such that s′s′′m = ss′′m′,

where the S−1A–module structure is given by a
s ·

m
s′ := am

ss′ . For f ∈ A, we define Mf :=

S−1
f M , and for a prime ideal p ⊂ A, Mp := S−1

p Mp. The following properties, analogous
to those for modules over rings, and proven in the same way, will be useful in what follows:

Proposition 3.6. Let A be a monoid, and S ⊂ A a multiplicative subset.

(1) Localization with respect to S is an exact functor of proto-exact categories from
ModA to ModS-1A. I.e. if J ↪→ M � N is a short exact sequence in ModA, then
S−1J ↪→ S−1M � S−1N is a short exact sequence in ModS-1A.

(2) Suppose M ∈ ModA, and J ⊂M is a submodule. There is an isomorphism

S−1(M/J) ' S−1M/S−1J

(3) If M,N ∈ ModA, and M is finitely generated, then there are isomorphisms

S−1 HomA(M,N) ' HomS−1A(S−1M,S−1N) ' HomA(S−1M,S−1N)

3.2.2. Quasicoherent sheaves. Let (X,OX) be a monoidal space. A sheaf M of pointed
sets on X is an OX–module if for every open set U ⊂ X, M(U) has the structure of an
OX(U)–module with the usual compatibilities. Morphisms of OX -modules are defined as
morphisms of sheaves of pointed sets commuting with the OX -action. In particular, given
a monoid A and an A–module M , there is an OX -module M̃ on (X = MSpecA,OX),
defined on basic open affines D(f) by M̃(D(f)) := Mf , whose stalk at p ∈ MSpecA is
isomorphic to Mp.
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For a monoid scheme (X,OX), an OX–module F is said to be quasicoherent if for every
x ∈ X there exists an open affine Ux ⊂ X containing x and an OX(Ux)–module M such
that F|Ux ' M̃ . F is said to be coherent ifM can always be taken to be finitely generated,
and locally free if M can be taken to be free. For a monoid A, there is an equivalence of
categories between the category of quasicoherent sheaves on MSpecA and the category of
A–modules, given by Γ(MSpecA, ·). We denote by Qcoh(X) and Coh(X) the categories
of quasicoherent and coherent sheaves on a monoid scheme (X,OX).

If F ,F ′ are OX -modules, then HomOX (F ,F ′) is the OX -module defined by

HomOX (F ,F ′)(U) := HomOX |U (F|U ,F ′|U ).

It follows from Proposition 3.6 that if F ,F ′ ∈ Coh(X), then HomOX (F ,F ′) ∈ Coh(X) as
well.

Definition 3.7. Let (X,OX) be a monoid scheme, and F ∈ Qcoh(X).

• F is torsion (resp. torsion-free) if the stalk Fx is a torsion (resp. torsion-free)
OX,x–module ∀x ∈ X.
• The support of F is the subset

supp(F) := {x ∈ X | Fx 6= 0}.

As in the case of ordinary schemes, one easily checks the following:

Proposition 3.8. Let (X,OX) be a monoid scheme.

(1) If X = MSpecA, andM ∈ ModA is finitely generated, then supp(M̃) = V (AnnA(M)).
(2) If F ∈ Coh(X), then supp(F) is a closed subset of X.
(3) If F ,F ′ ∈ Qcoh(X), F is torsion, and F ′ is torsion-free, then HomOX (F ,F ′) = 0.

If Z ⊂ X is a closed subset, we will denote by Qcoh(X)Z ,Coh(X)Z the full subcategories
of sheaves F such that supp(F) ⊂ Z.

Any quasicoherent sheaf of ideals I ⊂ OX determines a closed subscheme XI of X. Its
intersection with an open affine subset U ⊂ X is isomorphic to MSpec(OX(U)/I(U)). We
note that not all closed subschemes of (X,OX) are of this form [8].

Definition 3.9. Let (X,OX) be a monoid scheme, and F ∈ Coh(X). The scheme-
theoretic support of F is the closed subscheme associated to the coherent sheaf of ideals
Ann(F) ⊂ OX , where Ann(F)(U) := Ann(F(U)) ⊂ OX(U).

We note that V (Ann(F)) = supp(F).

Definition 3.10. Let I ⊂ OX be a quasicoherent sheaf of ideals, and F ∈ Qcoh(X). We
say that F is scheme-theoretically supported on XI ⊂ X if I · F = 0.
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This implies that I ⊂ Ann(F), or that the scheme-theoretic support of F is a closed
subscheme of XI . We denote by Qcoh(X)I the full subcategory of Qcoh(X) consisting of
quasicoherent sheaves supported on XI . As in the case of ordinary schemes, the functor

ι∗ : Qcoh(XI)→ Qcoh(X)I

F → ι∗F

is an equivalence, which restricts to an equivalence between Coh(XI) and Coh(X)I .
The bifunctors ⊕,⊗ on ModA induce corresponding bifunctors on Qcoh(X):

Definition 3.11. Let (X,OX) be a monoid scheme, and F ,F ′ ∈ Qcoh(X).

• The direct sum of F and F ′, denoted F ⊕ F ′, is the element of Qcoh(X) defined
by

F ⊕ F ′(U) := F(U)⊕F ′(U)

• The tensor product of F and F ′, denoted F ⊗OX F ′, is the element of Qcoh(X)

obtained as the sheafification of the presheaf U 7→ F(U)⊗OX(U) F ′(U).

3.2.3. Gluing for quasicoherent sheaves and morphisms. We will make use of the gluing
construction for quasicoherent sheaves. Namely, suppose that U = {Ui}i∈I is an open cover
of X, and suppose we are given for each i ∈ I a quasicoherent sheaf Fi on Ui, and for each
i, j ∈ I an isomorphism φij : Fi|Ui∩Uj → Fj |Ui∩Uj such that

(1) φii = id,
(2) For each i, j, k ∈ I, φik = φjk ◦ φij on Ui ∩ Uj ∩ Uk.

Then there exists a unique quasicoherent sheaf F on X together with isomorphisms ψi :

F|Ui → Fi, such that for each i, j, ψj = φij ◦ψi on Ui∩Uj . If moreover the Fi are coherent
then F is coherent. If U = {Ui = MSpecAi}i∈I is an affine open cover, the same data can
be presented as a collection {Mi} of Ai-modules with the obvious compatibilities.

Similarly, given an open cover U = {Ui}i∈I of X, and quasicoherent sheaves F ,F ′

presented in terms of gluing data (Fi, φij), (F ′i , φ′ij), a morphism f : F 7→ F ′ is the data of
morphisms fi : Fi 7→ F ′i such that φ′ij ◦fi = fj ◦φij on Ui∩Uj . If U = {Ui = MSpecAi}i∈I ,
and Fi = M̃i, F ′i = M̃ ′i , then the fi can be taken to be Ai-module homomorphisms
fi : Mi 7→M ′i .

Example 3.12. Given the description of P1 in Example 3.3, a quasicoherent sheaf F on
P1 can be viewed as a triple (M,M ′, φ), where

• M is a 〈t〉-module.
• M ′ is a 〈t−1〉-module
• φ : Mt 7→M ′t−1 is an isomorphism of 〈t, t−1〉-modules.
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F is coherent ifM,M ′ are finitely generated. Similarly, a quasicoherent subsheaf F ′ ⊂ F
is given by submodules N ⊂ M , N ′ ⊂ M ′, such that φ restricts to an isomorphism
Nt 7→ Nt−1 . We have for instance the following:

• (〈t〉, 〈t−1〉, φn) where φn(u) = t−nu, n ∈ Z. We denote this coherent sheaf by O(n)

in analogy with usual setting. O(n) is locally free of rank one.
• (〈t〉/(tm), 0, 0), and (0, 〈t−1〉/((t−1)m, 0), m ≥ 0. We call these sheaves T0,m and
T∞,m respectively. These are torsion sheaves supported at 0,∞ respectively.

If 0 ≤ k, r ≤ n, then (tk ·M, t−r ·M ′, φn) is a coherent subsheaf of O(n) isomorphic
to O(n − k − r), which yields a short exact sequence (see the following section for the
proto-exact structure on Qcoh(P1))

O(n− k − r) ↪→ O(n) � T0,k ⊕ T∞,r

3.2.4. Proto-exact structure on Qcoh(X) and Coh(X). We proceed to describe the proto-
exact structure on the categories Qcoh(X) and Coh(X). Recall that for any monoid A, the
category ModA is proto-exact, as explained in Example 2.6 and Remark 3.4. Let (X,OX)

be a monoid scheme. For F ,F ′ ∈ Qcoh(X), define

M(F ,F ′) := {φ ∈ HomOX (F ,F ′) | φx ∈M(Fx,F ′x) ∀x ∈ X},

E(F ,F ′) := {φ ∈ HomOX (F ,F ′) | φx ∈ E(Fx,F ′x) ∀x ∈ X},

where for every point x ∈ X, φx denotes the map of OX,x-modules induced on the stalks
Fx,F ′x. In other words, φ is an admissible mono/epi if the induced morphisms on stalks
are.

Proposition 3.13. Let (X,OX) be a monoid scheme.

(1) (Qcoh(X),M,E) and (Coh(X),M,E) are proto-exact.
(2) If Z ⊂ X is a closed subset, then (Qcoh(X)Z ,M,E) and (Coh(X)Z ,M,E) are

proto-exact.
(3) If I ⊂ OX is a quasicoherent sheaf of ideals, then (Qcoh(X)I ,M,E) and (Coh(X)I ,M,E)

are proto-exact subcategories of Qcoh(X),Coh(X) resp.
(4) If X = MSpecA, then the functor

˜: ModA → Qcoh(X)

is an exact equivalence, restricting to an exact equivalence

˜: ModfgA → Coh(X).

Proof. (1) IfX = MSpecA is affine, Qcoh(X) is equivalent to ModA, and the statement
follows from the observation in Example 2.6 that ModA is proto-exact. For general
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X, we may pass to an affine cover {Uα = MSpecAα}, and compute the push-
outs/pull-backs in Definition 2.1 in ModAα . It follows from Remark 3.4 and part
(1) of Proposition 3.6 that these glue. The proof for Coh(X) is identical, working
with finitely generated modules.

(2) This follows from the fact that if

F ↪→ F ′ � F ′′

is an admissible short exact sequence, then supp(F ′) = supp(F) ∪ supp(F ′′).
(3) Qcoh(X)I (resp. Coh(X)I) are equivalent to Qcoh(XI) (resp. Coh(XI)) via ι∗ as

explained above, and the latter are manifestly proto-exact. Alternatively, one ob-
serves that the question is local, and can be verified on affines, where the statement
follows Proposition 3.5.

(4) This follows from part (1) of Proposition 3.6, and the fact thatQcoh(X)(resp. Coh(X))
is equivalent to ModA (resp. ModfgA ) for an affine monoid scheme X.

�

3.3. Realizations of monoid schemes and quasicoherent sheaves. In this section,
we recall realizations of monoid schemes and quasicoherent sheaves. We refer the reader
to [8] for details.

Let k be a commutative ring, and A a monoid. Let k[A] be the monoid algebra:

k[A] :=
{∑

riai | ai ∈ A, ai 6= 0, ri ∈ k
}

with multiplication induced from the monoid multiplication.1 It is clear that any morphism
f : A1 → A2 of monoids induces a ring homomorphism fk : k[A1] → k[A2] and hence we
have a functor

−⊗ k : Monoids −→ Rings, A⊗ k := k[A].

which we refer to as scalar extension to k. The functor −⊗ k has a right adjoint sending
k to (k,×) - its underlying monoid, and so preserves colimits.

Scalar extension may be used to define a functor

−k :Msch −→ Sch / Spec k

X −→ Xk

defined on affine monoid schemes by MSpecAk := Spec(k[A]), and for a general X by
gluing these over an affine cover. Following [8], we refer to Xk as the k-realization of X.
It may be thought of as a base-change from MSpecF1 to Spec k. The realization functor
preserves limits.

1Strictly speaking, we identify 0k and 0A.
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One can similarly construct the scalar extension for quasicoherent sheaves. Given an
A–module M , let

k[M ] :=
{∑

rimi | mi ∈M,mi 6= ∗, ri ∈ k
}
.

k[M ] naturally inherits the structure of an k[A]–module. We may use this to define a
realization functor

−k : Qcoh(X)→ Qcoh(Xk)

F → Fk

It is defined on affines by assigning to M̃ on MSpecA the quasicoherent sheaf

M̃k := k̃[M ]

on (MSpec(A))k = Spec(k[A]), and for a general monoid scheme by gluing in the obvious
way. When F ∈ Coh(X), Fk ∈ Coh(Xk). We have the following:

Proposition 3.14. Let X be a monoid scheme, and k a commutative ring. F → Fk is an
exact functor from Qcoh(X) to Qcoh(Xk).

Proof. Since exactness can be checked on stalks, it suffices to verify this whenX = MSpecA

is affine. It is clear that if

M ↪→ P � N

is an admissible exact sequence in ModA, then

0→ k[M ]→ k[P ]→ k[N ]→ 0

is an exact sequence of k[A]-modules. �

Given a monoid scheme X and F ∈ Qcoh(X), we have for each open U ⊂ X a map

(3.1) φk(U) : k[Γ(F , U)]→ Γ(Fk, Uk)

defined as the unique k–linear map with the property that φk(U)(s) = s ∀s ∈ Γ(F , U).
When U is understood, we will refer to this map simply as φk.

3.4. Fans, monoid schemes, and toric varieties. In this section we recall some ba-
sics of the relationship between fans, monoid schemes, and toric varieties. We refer the
interested reader to [8] for details.

We begin by recalling some terminology pertaining to cones and fans. If N is a free
abelian group of finite rank, we will denote by NR the vector space N ⊗Z R. Recall that:

• A rational polyhedral cone σ ⊂ NR is a cone generated by finitely many elements
u1, u2, · · · , us ∈ N :

σ = {λ1u1 + · · ·λsus | λi ≥ 0}.
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• σ is strongly convex if σ ∩ (−σ) = {0}.
• The dimension of σ is the dimension of the smallest subspace of NR containing σ.
• A face of σ is the intersection {l = 0} ∩ σ, where l ∈ N∗R is a linear form which is
non-negative on σ.

Let now M = HomZ(N,Z), and denote by 〈, 〉 : M ×N → Z the canonical pairing. We
have MR ' N∗R. If σ ⊂ NR is a strongly convex rational polyhedral cone, the dual cone
σ∨ ⊂MR is

σ∨ := {m ∈MR | 〈m,u〉 ≥ 0 ∀u ∈ σ}.

We have dim(σ∨) = n if NR ' Rn. Sσ := σ∨ ∩M is, by Gordon’s Lemma, a finitely
generated monoid, from which we construct the affine monoid scheme Xσ := MSpecSσ.
The base change Xσ⊗k = Spec k[Sσ] to a field k has the structure of an affine toric variety.
The torus T corresponds to M (or N), and can be written T = MSpecM , and after the
base change, we have T ⊗ k = Spec k[M ]. In terms of algebra, the torus action is given by
multiplication:

M → Sσ ⊗M, tm 7→ tm ⊗ tm,

which extends to the torus action Tk ⊗k (Xσ)k → (Xσ)k after the base change to a field k.
We may create more general monoid schemes by gluing the Xσ above from cones assem-

bled into a fan. A fan consists of a finite collection ∆ of cones in N ⊗Z R satisfying the
following properties:

• Each σ ∈ ∆ is a strongly convex rational polyhedral cone.
• If σ ∈ ∆, and τ is a face of σ, then τ ∈ ∆.
• If σ, σ′ ∈ ∆, then σ ∩ σ′ is a face of each of σ, σ′.

If σ ∈ ∆, and τ is a face of σ, then Sσ ⊂ Sτ is a submonoid, inducing an open
embedding Xτ ⊂ Xσ. We may now construct a monoid scheme X∆ by gluing Xσ1 and
Xσ2 along Xσ1∩σ2 ∀σ1, σ2 ∈ ∆. X∆ ⊗ k is a toric variety over Spec k obtained by gluing
the affine toric varieties Xσ ⊗ k,Xτ ⊗ k along Xσ∩τ ⊗ k ∀σ, τ ∈ ∆.

Example 3.15. The projective line P1
k, as a toric variety, arises from the following fan:

The fan ∆ for P1
k

σ0σ1

From cones in ∆, one obtains the following affine monoid schemes (c.f. Example 3.3):

(1) Xσ0 = MSpecSσ0 = MSpec({xn | n ∈ N}) = A1 = {{0}, 〈x〉},
(2) Xσ1 = MSpecSσ1 = MSpec({x−n | n ∈ N}) = A1 = {{0}, 〈x−1〉},
(3) Xσ0∩σ1 = MSpecSσ0∩σ1 = MSpec({xn | n ∈ Z}) = T = {{0}}.
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By the base change, one obtains the affine line A1
k = Xσ0 ⊗ k = Xσ1 ⊗ k and the torus

Tk = Xσ0∩σ1 ⊗ k. By gluing Xσ0 and Xσ1 along Xσ0∩σ1 , we obtain the monoid projective
line P1. One can easily check that

P1 ⊗ k = P1
k.

Example 3.16. The projective plane P2
k, as a toric variety, arises from the following fan:

σ0

σ1

σ2

The fan ∆ for P2

From σi, one obtains the following three affine monoid schemes:

(1) Xσ0 = MSpec(〈x1, x2〉) = A2 (the monoid affine plane),
(2) Xσ1 = MSpec(〈x−1

1 , x−1
1 x2〉) = A2,

(3) Xσ2 = MSpec(〈x1x
−1
2 , x−1

2 〉) = A2.

For each i 6= j, τij = σi ∩ σj provides the gluing data, and one obtains the monoid
projective plane X∆ = P2. In particular, X∆ ⊗ k = P2

k.

A cone σ ⊂ NR is smooth if it is generated by a subset of a basis of N . X∆⊗k is smooth
⇐⇒ every σ ∈ ∆ is smooth. Finally, X∆ ⊗ k is projective ⇐⇒ ∆ is the normal fan of a
rk(N)-dimensional lattice polytope in MR (see [11] for an explanation of normal fan).

In [8], Cortiñas, Haesemeyer, Walker, and Weibel characterize which monoid schemes
arise from fans. To be precise, they show that for a fan ∆, the monoid scheme X∆ is a
separated, connected, torsion-free, normal monoid scheme of finite type. Also, conversely,
if X is such a monoid scheme (toric monoid scheme), they show that one can construct a
fan ∆ so that X = X∆. For details, see [8, Section 4].

3.5. Decomposing modules and coherent sheaves. In this section we show that co-
herent sheaves on a monoid scheme admit finite canonical decompositions into indecom-
posables, showing that a version of the Krull-Schmidt theorem holds in this context.

Definition 3.17. Let A be a monoid. An A-module M is indecomposable if it cannot be
writtenM = M ′⊕M ′′ for non-zero A-modulesM ′,M ′′. Similarly, a quasicoherent sheaf F
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on a monoid scheme X is indecomposable if it cannot be written F = F ′⊕F ′′ for non-zero
quasicoherent sheaves F ′,F ′′.

Thus, a quasicoherent sheaf F = M̃ on X = MSpecA is indecomposable if and only if
M is indecomposable as an A-module. It follows from property (4) of the category ModA

(see the paragraph after Proposition 3.5) that if F ,F ′ are quasicoherent OX–modules, and
G ⊂ F ⊕ F ′ is a quasicoherent subsheaf, then G = (G ∩ F)⊕ (G ∩ F ′), where for an open
subset U ⊂ X,

(G ∩ F)(U) := G(U) ∩ F(U).

We thus obtain:

Proposition 3.18. Suppose that F ,F ′ are non-zero quasicoherent sheaves on a monoid
scheme (X,OX), and that G is an indecomposable quasicoherent subsheaf of F ⊕F ′ Then
G ⊂ F or G ⊂ F ′.

Proposition 3.19. (1) Let A be a monoid, and M ∈ ModA a finitely generated A-
module. Then M can be written as a finite direct sum

M 'M1 ⊕M2 ⊕ · · · ⊕Mk

where Mi, i = 1 · · · k is indecomposable. Moreover, if M 'M ′1 ⊕M ′2 ⊕ · · · ⊕M ′k′ is
another such decomposition into indecomposable modules, then k = k′, and there
exists a permutation σ ∈ Sk such that Mi 'M ′σ(i) for i = 1, . . . , k.

(2) Let (X,OX) be a quasi-compact monoid scheme. Then every F ∈ Coh(X) can be
written as a finite direct sum

(3.2) F ' F1 ⊕F2 ⊕ · · · ⊕ Fm

where each Fi ∈ Coh(X) is indecomposable. Moreover, if F ' F ′1⊕F ′2⊕ · · · ⊕F ′m′
is another such decomposition into indecomposable coherent sheaves, then m = m′,
and there exists a permutation σ ∈ Sm such that Fi ' F ′σ(i).

Proof. For the first part, consider the equivalence relation on M\0 generated by m ∼ am,
for a ∈ A, m ∈ M . The decomposition into indecomposable factors is easily seen to
coincide with equivalence classes for this relation, by adjoining 0 to each. To see that a
finite number of indecomposable factors occur, we note that each must contain at least
one generator, and so the number of factors is bounded above by the minimum number of
generators for M .

For the second part, we first show that a finite decomposition into indecomposable
sheaves exists. Let U = {U1, · · · , Ur} be a finite affine cover of X (which exists since X is
quasi-compact). For each i we have F|Ui ' Ñi for some finitely generated OX(Ui) - module
Ni. By the first part of the proposition, we can decompose Ni uniquely into finitely many
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indecomposable factors Ni ' Ni,1 ⊕ · · · ⊕ Ni,ki . Suppose now that F ' F1 ⊕ · · · ⊕ Fs is
some decomposition of the coherent sheaf F into not necessarily indecomposable non-zero
summands. Each Ñi,j belongs to exactly one of the summands, yielding a map from the
set {Ñi,j} to the set {Fk}. Moreover, since each Fk must be non-zero on at least one of
the affines U1, · · · , Ur, we see this map is surjective. It follows that a finite decomposition
of F into indecomposable summands exists.

We now prove uniqueness. Suppose that

F ' F1 ⊕F2 ⊕ · · · ⊕ Fm ' F ′1 ⊕F ′2 ⊕ · · · ⊕ F ′m′

where Fi,F ′j are indecomposable. Denote by ιi : Fi ↪→ F (resp. ι′j : F ′j ↪→ F) the
inclusions. By Proposition 3.18, F1 ⊂ F ′r for some 1 ≤ r ≤ m′. The composition

F1 ↪→ F � F ′r ↪→ F � F1

is an isomorphism, implying that F ′r ↪→ F � F1 is a surjection. By Proposition 3.18
again, F ′r ⊂ Fs for a unique 1 ≤ s ≤ m, and since F ′r ∩ F1 6= 0, we conclude that s = 1.
Thus F ′r ↪→ F � F1 is an injection, and therefore an isomorphism. The claim now follows
by induction.

�

The following simple proposition follows immediately from the fact that an isomorphism
of pointed sets is a permutation:

Proposition 3.20. (1) Let A be a monoid, and M,M ′ ∈ ModA, such that M =

N ⊕K, M ′ = N ′⊕K ′. Suppose that φ : M →M ′ is an isomorphism that restricts
to an isomorphism φ1 : N → N ′. Then φ = φ1 ⊕ φ2, where φ2 = φ|K : K → K ′.

(2) Let (X,OX) be a monoid scheme, and F ,F ′ ∈ Coh(X) such that F = G ⊕ H,
F ′ = G′ ⊕ H′, and ψ : F → F ′ an isomorphism restricting to an isomorphism
ψ1 : G → G′. Then ψ = ψ1 ⊕ ψ2, where ψ2 = ψ|H : H → H′.

The following elementary result will be used later to classify indecomposable sheaves:

Proposition 3.21. Let X be a monoid scheme, and U, V ⊂ X open subsets such that
X = U ∪ V . Suppose that F is a coherent sheaf on X such that

• F|U ' F ′ ⊕F ′′, where F ′,F ′′ are non-zero.
• F ′|U∩V = 0.

Then F is decomposable.

Proof. Let G = F|V . By Section 3.2.3 we may view F as glued from F ′ ⊕ F ′′ to G via an
isomorphism φ : F ′⊕F ′′|U∩V 7→ G|U∩V . Since F ′|U∩V = 0, φ is an isomorphism F ′′|U∩V →
G|U∩V . Thus, F = H⊕H′, where H = (F ′′, U) 'φ (G, V ), and H′ = (F ′, U) '0 (0, V ). �
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4. Type-α sheaves and Hall Algebras

Having reviewed the basics of monoid schemes and coherent sheaves on them, we now
turn to Hall algebras. If X is an ordinary projective variety over a finite field, the category
Coh(X) is finitary (see [33]), and so one may define and study its Hall algebra. In the
world of monoid schemes, the situation is more complicated. If X is a monoid scheme,
the category Coh(X) is no longer finitary in general, as seen in [30, Example 4] even when
X = P1. There is however a class of sheaves we call type-α sheaves, which are well-behaved
in this regard, and can be used to define a Hall algebra.

4.1. Type-α modules. Recall from part (2) of Example 2.6 that Vect(F1) is the proto-
abelian sub-category of Setfin• with objects finite pointed sets and morphisms satisfying
the condition (2.4).

Definition 4.1. ([42, Definition 2.2.1]) Let A be a monoid. M ∈ ModA is said to be
of type-α if it is isomorphic to a module in Fun(A,Vect(F1)), where A is viewed as a
one-object category.

In other words, M is of type-α if for a ∈ A, x, y ∈M ,

(4.1) ax = ay ⇐⇒ x = y OR ax = ay = 0.

Equivalently, the endomorphism of M sending x to ax satisfies the condition (2.4) ∀a ∈
A, x ∈M . We denote by ModαA the (non-full) proto-abelian subcategory of ModA consist-
ing of type-α modules with morphisms satisfying the condition (2.4). The proto-abelian
property of ModαA implies in particular that all morphisms have kernels and cokernels.

Proposition 4.2. Let A be a monoid, and S ⊂ A a multiplicative subset.

(1) If M ∈ ModαA, then S−1M is a type-α S−1A-module.
(2) Localization with respect to S is an exact functor of proto-abelian categories from

ModαA to ModαS-1A. I.e. if J ↪→ M � N is a short exact sequence in ModαA, then
S−1J ↪→ S−1M � S−1N is a short exact sequence in ModαS-1A.

Proof. Suppose M ∈ ModαA, and
a
s ∈ S

−1A, mt ,
m′

t′ ∈ S
−1M , such that

a

s
· m
t

=
a

s
· m
′

t′

It follows that there is s′ ∈ S such that s′st′am = s′stam′ ∈M , or (s′sa)t′m = (s′sa)tm′.
By (4.1), either t′m = tm′, implying m

t = m′

t′ ∈ S
−1M , or both sides are 0. In the latter

case we have (s′st′)am = 0, and since s′st′ ∈ S, a
s ·

m
t = 0, and by the same reasoning

a
s ·

m′

t′ = 0. The second part follows from Proposition 3.6. �



28 JAIUNG JUN AND MATT SZCZESNY

Example 4.3. Let A = 〈t〉. Given M ∈ ModA, we may construct a directed graph ΓM

which completely describes the isomorphism class of M as follows: the vertices of ΓM are
the non-zero elements of M , with directed edges from m to t · m for every non-zero m.
With this, one may observe that every vertex of ΓM has at most one outgoing edge. Recall
that for a directed graph, a vertex is said to be a leaf (resp. root) if it has no incoming
(resp. outgoing) edges. Then, one can easily see that elements ofM corresponding to leaves
of ΓM form a minimal set of generators for M as an A–module. If M,N are A–modules,
then one has ΓM⊕N = ΓM t ΓN - i.e. direct sums of A–modules (or equivalently coherent
sheaves on A1) correspond to disjoint unions of associated directed graphs.

It is well-known (see, for instance, [41]) that the connected components (i.e. those
corresponding to indecomposable modules) of ΓM can be of three distinct types:

(1) a rooted tree - i.e. the underlying undirected graph of Γ is a tree possessing a
unique root, such that there is a unique directed path from every vertex to the
root (see Figure 1).

(2) a graph obtained by joining a rooted tree to the initial vertex of Γ〈t〉 (see Figure
2).

(3) a graph obtained by gluing rooted trees (see Figure 3) to an oriented cycle.

Figure 1 Figure 2

Figure 3
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The modules of type-α are then easily seen to be those where every vertex has either
0 or 1 incoming edge, either ladders (finite or infinite) (see Figure 4) or pure cycles (i.e.
those without trees attached - see Figure 5).

Figure 4

Figure 5

4.2. Quasicoherent sheaves of type-α .

Definition 4.4. (Type-α condition for OX -modules) Let (X,OX) be a monoid scheme
and F ∈ Qcoh(X) . We say that F is type-α if the stalk Fx is a type-α OX,x-module
∀x ∈ X.

The following lemma shows that the type-α condition is affine-local.

Lemma 4.5. Let (X,OX) be a monoid scheme and F ∈ Qcoh(X) . The following condi-
tions are equivalent:

(1) F is type-α.
(2) For every affine open neighborhood U ⊆ X, F(U) is a type-α OX(U)-module.
(3) Every x ∈ X is contained in an open affine neighborhood U ⊂ X such that F(U)

is a type-α OX(U)-module.

Proof. (1) =⇒ (2): Suppose U = MSpecA for some monoid A, and F = M̃ for M ∈
ModA. A has a unique maximal ideal (i.e. MSpecA has a unique closed point) m = A−A×

(the complement of the units) such that Mm = M . Since stalks of F are assumed type-α ,
M ∈ ModαA.

(2) =⇒ (3): This is clear
(3) =⇒ (1): This follows from Proposition 4.2. �

Definition 4.6. Let (X,OX) be a monoid scheme.

(1) The category Qcoh(X)α is the (non-full) subcategory of Qcoh(X) with objects
quasicoherent sheaves satisfying Definition 4.4, and morphisms inducing type-α
morphisms on stalks. The category Cohα(X) is the full subcategory of Qcoh(X)α

consisting of coherent sheaves satisfying Definition 4.4.
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(2) If I ⊂ OX is a quasicoherent sheaf of ideals, Qcoh(X)αI (resp. Cohα(X)I) is the
full subcategory of Qcoh(X)α (resp. Cohα(X)) consisting of those F such that
I · F = 0.

We have the following analogue of Proposition 3.13

Proposition 4.7. Let (X,OX) be a monoid scheme.

(1) The categories Qcoh(X)α and Cohα(X) are proto-abelian.
(2) If Z ⊂ X is a closed subset, the categories Qcoh(X)αZ ,Coh

α(X)Z of type-α sheaves
supported in Z are proto-abelian.

(3) If I ⊂ OX is a quasicoherent sheaf of ideals, the categories Qcoh(X)αI and Cohα(X)I

are proto-abelian.
(4) If X = MSpecA, then the functor

˜: ModαA → Qcoh(X)α

is an exact equivalence, restricting to an exact equivalence

˜: (ModαA)fg → Cohα(X).

Proof. This is proved just as Proposition 3.13, using Lemma 4.2 in (3). �

Remark 4.8. In [21] the authors define a class of quasicoherent sheaves termed partially
cancellative (PC) and show that these form a quasi-exact category. The PC condition is
very similar in spirit to our type-α condition, but is essentially different, since it involves
"canceling" an element of the module to deduce the equality of elements of the monoid,
whereas the type-α condition involves canceling an element of the monoid to deduce equal-
ity of elements in the module. For instance, in Example 4.3, a rooted tree with non-trivial
branching is PC but not type-α , whereas a pure cycle is type-α but not PC.

4.3. Ext and scalar extension. We recall from Section 2.1 that in any proto-exact/proto-
abelian category Ext(M,N) denotes the set of equivalence classes of admissible short exact
sequences N ↪→ P � M where two such are equivalent if the diagram (2.3) commutes.
Given a commutative ring k, the scalar extension functors of Section 3.3 are exact. Thus,
given a monoid A, and M,N ∈ ModA, we obtain a map a pointed sets (with base-points
being the split extensions)

(4.2) Ek : ExtModA
(M,N)→ Ext1

k[A](k[M ], k[N ])

sending the admissible exact sequence N ↪→ P � M to 0 → k[N ] → k[P ] → k[M ] → 0.
Similarly, given a monoid scheme (X,OX), and F ,F ′ ∈ Coh(X), we obtain a map of
pointed sets

(4.3) Ek : ExtCoh(X)(F ′,F)→ Ext1
Coh(Xk)(F

′
k,Fk)
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where we have abused notation. Our first observation is that the maps Ek need not be
injective.

Example 4.9. Let A = 〈t〉, and consider the following A-modules:

• N = {∗, a, b}, with t · a = b, t · b = ∗.
• P = {∗, a, b, c}, with t · a = b, t · b = ∗, t · c = b.
• M = {∗, c} with t · c = ∗.

Defining maps by the property that elements get sent to those with the same labels, we
then have admissible exact sequences

N ↪→ P �M

and

N ↪→ N ⊕M �M,

which are clearly not equivalent since P and N ⊕ M are not isomorphic, P being in-
decomposable. However, if k is a field, then ψk : k[P ] ' k[N ] ⊕ k[M ], defined by
ψk(a) = a, ψk(b) = b, ψk(c) = c + a is an isomorphism of k[t]-modules, which (after tak-
ing identity isomorphisms on k[N ] and k[M ]) yields and isomorphism of exact sequences
0→ k[N ]→ k[P ]→ k[M ]→ 0, and 0→ k[N ]→ k[N ⊕M ]→ k[M ]→ 0.

The example [30, Example 4] exhibits infinitely many distinct extensions in Coh(P1)

mapping to the same one on the realization P1
k.

We now proceed to show that the maps Ek are injective if the modules/sheaves are of
type-α . We begin with the following lemma.

Lemma 4.10. Let A be a monoid, and M,N ∈ ModαA. If two exact sequences in ModαA

(4.4)

0 M P N 0

0 M P ′ N 0

i π

i′ π′

become equivalent after scalar extension to a field k, then there exists a unique isomorphism
g ∈ HomModαA

(P, P ′) making the diagram

(4.5)
0 M P N 0

P ′
i′

i

g

π

π′

commute. In other words, the two sequences in (4.4) are equivalent as admissible exact
sequences in ModαA.
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Proof. As pointed sets, we write explicitly

M = {0, xr}r∈I , N = {0, ys}s∈J ,

- that is, xr (resp. ys) are the nonzero elements in M (resp. N) for all r ∈ I (resp. s ∈ J).
We identify P = M ∨N = P ′. It follows that if g : P → P ′ making (4.5) commute exists,
it is uniquely (as a map of pointed sets) determined on M,N , and therefore unique.

Since the exact sequences (4.4) are equivalent after base change to a field k, we have a
commutative diagram of k[A]-modules:

(4.6)
0 k[M ] k[P ] k[N ] 0

k[P ′]
i′

i

f

π

π′

where we used the same letter to denote k-linear extensions of maps, and the map f :

k[P ] → k[P ′] is an isomorphism of k[A]-modules. We write P = {0, ur, vs}r∈I,s∈J with
i : M → P sending xr to ur and π : P → N sending vs to ys and all the ur to 0. Similarly,
P ′ = {0, ur, vs} with the maps i′ : M → P ′ and π′ : P ′ → N . The unique isomorphism
of pointed sets g : P → P ′ making (4.5) commute then sends ur to ur and vs to vs.
As k-vector spaces (not k[A] -modules), we identify k[P ] = k[M ] ⊕ k[N ], with the first
summand spanned by ur’s and the second by vs’s, and similarly with k[P ′].

Since f : k[P ] → k[P ′] is a k[A]-isomorphism inducing the identity on k[M ] and k[N ],
we must have

(4.7) f(ur) = ur, and f(vs) = vs + L(vs),

where L(vs) ∈ k[M ] (i.e. it is a linear combination of ur’s). We now use the fact that
f in (4.6) is a k[A]-module isomorphism and M,N,P, P ′ ∈ ModαA to deduce that g is an
A-module isomorphism. Since g is a bijection, this amounts to checking it is A-equivariant,
i.e.

(4.8) g(ap) = ag(p), ∀a ∈ A, p ∈ P.

The case when p = 0 is clear, and hence there are four cases to consider:

(i) p = ur for some r.
(ii) p = vs, ap = un 6= 0 for some s, n.
(iii) p = vs, ap = vt 6= 0 for some s, t.
(iv) p = vs, ap = 0.

We prove that in each case (4.8) holds.

(i) The first case is trivial since f and g agree on elements in M , and if p ∈ M (by
considering M as a subset of P ), then so is ap.
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(ii) In this case, one may observe that f(ap) = af(p) implies the following equation:

(4.9) avs + aL(vs) = un.

We first claim that avs 6= 0. In fact, if avs = 0, then we have from (4.7) that

vs = f(vs − L(vs)),

where L(vs) = f−1(L(vs)). In concrete terms, it is the same linear combination of
u’s as L(vs) is of u’s. We calculate

0 = avs = af(vs − L(vs)) = f(a(vs − L(vs)))

and since f is an isomorphism, we have that

(4.10) avs − aL(vs) = 0.

From the assumption, we know avs = un 6= 0, and so for (4.10) to hold, there
is a cancellation between this term and some term in aL(vs), which is a linear
combination of au’s. For this to happen, we would have to have avs = auj 6= 0 for
some j, but from the type-α condition this is impossible since these are distinct.
This proves our claim.

Returning to (4.9), knowing that avs 6= 0 the same kind of argument shows that
unless avs = un, avs must cancel with some term occurring in aL(vs), which again
by the type-α condition is impossible. In particular, this implies that

ag(vs) = avs = un = g(un) = g(avs).

(iii) In the third case, f(ap) = af(p) implies the equality

vt + L(vt) = avs + aL(vs).

If avs ∈ M ⊂ k[M ], then vt ∈ k[M ]. In particular, vt is a linear combination of
u’s, which is impossible. It follows that avs ∈ N ⊂ k[N ], and hence we have that

vt − avs = aL(vs)− L(vt),

where the LHS lies in k[N ] and the RHS in k[M ]. Thus, both LHS and RHS are
zero. In particular, vt = avs, and hence

g(avs) = g(vt) = vt = avs = ag(vs).

(iv) In this case, we have that

avs + aL(vs) = 0,

and if avs 6= 0, it must cancel a term in aL(vs) which is impossible by the type-α
condition. Therefore, we have that g(avs) = 0 = avs = ag(vs).

This completes the proof. �
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We now use this result to deduce that the map (4.3) is an injection for any field k.

Proposition 4.11. Let (X,OX) be a monoid scheme, k a field, and F ,F ′ ∈ Cohα(X).
Then the map

Ek : ExtCohα(X)(F ′,F)→ Ext1
Coh(Xk)(F

′
k,Fk)

is an injection.

Proof. Let F ′ ↪→ G � F and F ′ ↪→ G′ � F be two admissible exact sequences in Cohα(X)

whose images under Ek are equivalent. The same line of argument as given at the beginning
of the proof of Lemma 4.10 shows that there is a unique isomorphism of sheaves of pointed
sets φ : G → G′ (not a priori of OX -modules), making the diagram

(4.11)
0 F G F ′ 0

G′
φ

commute. We want to show that φ is OX -equivariant.
Let U ⊂ X be open, {Ui}i∈I be an affine open cover of U . Let a ∈ OX(U) and

µa : Gk|U → Gk|U multiplication by a. Consider the map of sheaves of k-vector spaces

ψ := aφk|U − φk|U ◦ µa ∈ HomShk(Gk|U ,G′k|U ),

where φk denotes the k-linear extension of φ. By Lemma 4.10, ψ|Ui = 0 for every i ∈
I. This means that φ(U)(a · s) = aφ(U)(s) for every s ∈ G(U), showing that φ is an
isomorphism in Cohα(X). This proves that Ek is injective. �

We now arrive at our main result.

Theorem 4.12. Let ∆ be the fan of a projective toric variety, and (X∆,OX) the corre-
sponding monoid scheme. Then

(1) Cohα(X∆) is a finitary proto-abelian category.
(2) The Hall algebra HCohα(X∆) is isomorphic, as a Hopf algebra, to an enveloping

algebra U(nαX), where nαX has the indecomposable sheaves in Cohα(X∆) as a basis.

Proof. For the first part, let k be a finite field, and let F ,F ′ ∈ Coh(X∆). Fk,F ′k ∈
Coh(X∆,k), and since X∆,k is a projective variety over k, it is well-known that the sets
HomOX∆,k

(Fk,F ′k) and Ext1
OX∆,k

(Fk,F ′k) are finite-dimensional vector spaces over k, hence
finite sets. The scalar extension map

HomCohαX∆
(F ,F ′)→ HomCohαX∆,k

(Fk,F ′k)

is injective, showing that the LHS is finite. By Proposition 4.11, ExtCohα(X)(F ′,F) is finite
as well. This shows that Cohα(X∆) is finitary, and proto-abelian by Proposition 4.7.
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The second part follows from Proposition 2.7. �

To simplify notation, we will write

Hα
X := HCohα(X)

whenever it’s defined.

4.4. The Hall algebra of P1. We review here the example of the Hall algebra Hα
P1 of the

category Cohα(P1) considered in [39], where we refer the interested reader for details. It
is shown in [39] that the indecomposable objects of Cohα(P1) are:

• The line bundles O(n) (see Example 3.12).
• The torsion sheaves T0,m, T∞,m (see Example 3.12).
• “Cyclotomic” sheaves Cl represented in notation of Example 3.12 as (M,M ′, φ),
where each of the associated directed graphs ΓM ,ΓM ′ is a pure cycle of length l

(see Figure 5 of Example 4.3), and φ : Mt 7→M ′t−1 is any isomorphism (all choices
of such a φ yields isomorphic sheaves).

By Proposition 2.7, the Hall algebra Hα
P1 is isomorphic to an enveloping algebra U(nα),

where nα has as a basis the isomorphism classes the above indecomposable sheaves. The
commutation relations among the basis O(n), Tx,m, Ck are (see [39]):

[Tx,m,O(n)] = O(m+ n)

with all other commutators 0.
Let

h1 =

(
1 0

0 0

)
, h2 =

(
0 0

0 1

)
, e =

(
0 1

0 0

)
,

and let b be the Lie subalgebra of gl2[t, t−1] with basis {h1⊗tr, h2⊗ts, e⊗tn}, r, s ≥ 1, n ∈ Z.
Let a denote the Lie subalgebra of nα spanned by {T0,r, T∞,s,O(n)}, r, s ≥ 0, n ∈ Z. We
have an isomorphism

ρ : a 7→ b

ρ(T0,r) = h1 ⊗ tr

ρ(T∞,s) = −h2 ⊗ ts

ρ(O(n)) = e⊗ tn

The Lie algebra b can be viewed as a non-standard Borel subalgebra in gl2[t, t−1]. Since
the generators Cl are central, we have a splitting nα ' a ⊕ k, where k is an abelian Lie
subalgebra on the countably many generators C1, C2, · · · . To summarize

Proposition 4.13. Hα
P1 is isomorphic as a Hopf algebra to U(a⊕k), where a is isomorphic

to a subalgebra of gl2[t, t−1], and k is an abelian Lie algebra with generators C1, C2, · · · .
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For fixed x ∈ {0,∞}, the torsion sheaves Tx,r, r ≥ 1 supported at x multiply according
to:

Tx,r · Tx,s = Tx,r+s + Tx,r ⊕ Tx,s

The Hopf subalgebra Hα
x of Hα

P1 generated by these is therefore isomorphic to the Hopf
algebra Λ of symmetric functions, via the map sending Tx,r to pr - the rth power sum.

5. The category of T-sheaves

Let X∆ be the monoid scheme attached to a fan ∆. In this section we define a subcate-
gory CohT (X∆) ⊂ Cohα(X∆) of coherent T -sheaves on X∆. Roughly speaking, a T -sheaf
is one which admits a “grading by ∆” in a sense explained below. We show that locally on
affines, these are given combinatorially by generalized skew shapes when ∆ is smooth.

5.1. Graded modules and modules admitting a grading. Let Γ be a commutative
semigroup (which is required to possess a 1, but not necessarily a 0) written additively,
and A a Γ-graded monoid. By this we mean that A can be written as

(5.1) A =
⊕
γ∈Γ

Aγ

as pointed sets, with 1A ∈ A0, and Aγ ·Aδ ⊂ Aγ+δ. Equivalently, one can think of
a Γ-graded monoid as a monoid A equipped with a semigroup map A → Γ such that
1A, 0A 7→ 0γ .

Definition 5.1. Let A be a Γ-graded monoid. A graded A-module is an A-module M
with a decomposition

(5.2) M =
⊕
γ∈Γ

Mγ

such that Aγ ·Mδ ⊂Mγ+δ.

The following lemma is obvious:

Proposition 5.2. Let A be a Γ-graded monoid.

(1) If M is a graded A-module and N ⊂ M is a submodule, then both N and M/N

inherit a canonical grading.
(2) If M1,M2 are graded A-modules, then so are M1 ⊕M2 and M1 ∧M2.
(3) If A is commutative, and M1,M2 are graded, then M1 ⊗A M2 carries a canonical

grading with deg(m1 ⊗m2) = deg(m1) + deg(m2).

Given a graded A-module M and ρ ∈ Γ, we denote by M [ρ] the graded module with
M [ρ]γ := Mγ+ρ. We say that a module M admits a grading if it has the structure (5.2)
for some grading.
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We denote by ModgrA the full subcategory of ModA whose objects are modules admitting
a grading. We do not a priori require the morphisms to be compatible with these. We
denote by Modgr,αA the full subcategory of ModαA of type-α modules admitting a grading,
and by Modgr,fg,αA which are in addition finitely generated. The following is a consequence
of Propositions 3.5 and 5.2.

Proposition 5.3. Let A be a Γ-graded monoid.

(1) ModgrA is a full proto-exact subcategory of ModA.
(2) Modgr,αA is a full proto-abelian subcategory of ModαA.

5.2. T -sheaves. Let ∆ be a fan, and X∆ the corresponding monoid scheme as in Section
3.4.

Definition 5.4. F ∈ Cohα(X∆) is a T -sheaf if for every maximal cone σ ∈ ∆, F|Xσ ' M̃σ,
where Mσ ∈ Modgr,fg,αSσ

, and we view Sσ as graded by itself. We denote by CohT (X∆) the
full subcategory of Cohα(X∆) whose objects are T -sheaves.

Proposition 5.5. Let ∆ be a fan, and (X∆,OX∆
) the corresponding monoid scheme.

(1) CohT (X∆) is a full proto-abelian subcategory of Cohα(X∆).
(2) If Z ⊂ X is a closed subset, the category CohT (X∆)Z of T -sheaves supported in Z

is a full proto-abelian, extension-closed subcategory of CohT (X∆).
(3) If I ⊂ OX∆

is a quasicoherent sheaf of ideals, then the category CohT (X∆)I is a
full proto-abelian subcategory of CohT (X∆).

(4) If σ ∈ ∆ is a maximal cone, and X = MSpecSσ, then the functor

˜: Modgr,fg,αSσ
→ CohT (Xσ)

is an exact equivalence.

Proof. (1): If σ ∈ ∆ is a cone, A = Sσ, and Xσ = MSpecA, then CohT (Xσ) is equivalent
to Modgr,fg,αA , and hence (1) directly follows from Proposition 5.3. For general X∆, we
may use an affine cover {Uσ = MSpecSσ} given by the maximal cones, and glue them
exactly as in Proposition 3.13 since the grading for any F ∈ CohT (X∆) is only through
maximal cones in ∆ and for gluing we use cones which are not maximal.

(2), (3), and (4): One may apply a similar argument as in Proposition 3.13 in this case
as above. �

5.3. Local picture - T -sheaves on An. Let ρn ⊂ Rn be the cone generated by the
standard basis vectors {e1, · · · , en}, and take ∆ = ρn. Then Sρn = F1〈x1, · · · , xn〉, and
X∆ = Xρn = An, with its standard toric structure. In this section, we describe the T -
sheaves on An. This yields a local description of T -sheaves on any smooth toric monoid
scheme, since any such comes from a fan ∆ whose maximal cones are isomorphic to ρn.
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The results of this section are a modest generalization of those obtained in [42] (which
correspond to T -sheaves supported at the origin), and several examples are taken from
that paper.

5.3.1. Generalized skew shapes. Let A be a finitely generated free commutative monoid,
i.e. one isomorphic to the monoid F1〈x1, . . . , xn〉 in Example 3.2 for some n ∈ N. We may
equip A\{0A} with a partial order ≤, where a ≤ b if and only if b = ac for some nonzero c.
The poset (A \ {0A},≤) is isomorphic to (Zn≥0,≤′), where u ≤′ v if and only if v = u+ w

for some w ∈ Zn≥0 by choosing a minimal ordered set of generators and taking the vector
of exponents. We note that 1A is the unique minimal element in (A \ {0A},≤).

Definition 5.6. A generalized skew shape T in A is a convex sub-poset T ⊂ (A\{0A},≤).
We say that T is connected if it is connected as a poset (i.e. if the corresponding Hasse
diagram is connected).

We consider two connected generalized skew shapes T , T ′ ⊂ (A \ {0A},≤) equivalent if
T ′ = aT for some nonzero a ∈ A. This generates an equivalence relation on all generalized
skew shapes. The terminology skew shape stems from the fact that when A = F1〈x1, x2〉,
the equivalence classes of finite T ’s correspond to connected skew Young diagrams, as seen
in the following example:

Example 5.7 ([42]). Let n = 2, and

T = {x1, x
2
1, x

3
1, x2, x1x2, x

2
2} ⊂ F1〈x1, x2〉

(up to multiplication by a ∈ F1〈x1, x2〉.) Then T corresponds to the connected skew Young
diagram:

To the equivalence class of a generalized skew shape T ⊂ (A\{0A},≤) one can attach an
A-module MT , with underlying set T t {0}, and A-module structure given by: for a ∈ A
and t ∈ T ,

a · t =

at, if at ∈ T

0 otherwise.

MT admits a tautological gradation by A, where deg(t) = t ∈ A (and deg(0) = 0A).

Example 5.8. Let T as in Example 5.7. In terms of the skew Young diagram, x1 (resp. x2)
acts on MT by moving one box to the right (resp. one box up) until reaching the edge of
the diagram, and 0 after that. A minimal set of generators for MT is indicated by the
black dots:
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•
•

The following is straightforward:

Proposition 5.9. Let A ' F1〈x1, . . . , xn〉 be a finitely generated free commutative monoid,
and T ⊂ (A \ {0A},≤) a generalized skew shape. Then, the following hold.

(1) MT ∈ ModαA and admits a gradation by A.
(2) (T ,≤) has a finite number of minimal elements, which correspond to the unique

set of minimal generators of MT .
(3) If T ' T1 + T2 as posets (where the right hand side denotes the disjoint union of

the posets T1, T2), then MT 'MT1 ⊕MT2 as A-modules.
(4) MT is indecomposable if and only if T is connected.
(5) If T ⊂ S is a sub-poset, then MT is a sub-module of MS if and only if S\T is an

order ideal.
(6) If MT ⊂ MS is a sub-module corresponding to the sub-poset T ⊂ S, then the

quotient MS/MT 'MS\T .

Example 5.10 ([42]). Let A = F1〈x1, x2〉. Let S be the generalized skew shape below,
with T ⊂ S corresponding to the sub-shape consisting of the boxes containing t’s.

t
t
t t

t

We have the following decomposition of MT

MT = ⊕ ⊕

and the quotient
MS/MT = ⊕

One can see that AnnA(MT ) = (x2
1, x1x2, x

2
2), and hence supp(MT ) = V (x1, x2) = 0 ⊂ A2.

Example 5.11. Let A = F1〈x1, x2〉, and consider the following subset T ⊂ (A \ {0A},≤)

T := {xn1
1 xn2

2 | n1 ∈ N, 0 ≤ n2 < 2} ∪ {xn1
1 xn2

2 | n2 ∈ N, 0 ≤ n1 < 2}.

T corresponds to the infinite shape
...
...

· · ·
· · ·
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We haveMT ' A/(x2
1x

2
2), and AnnA(MT ) = (x2

1x
2
2). Hence supp(MT ) = V (x1x2) ⊂ A2

is the union of the x1 and x2-axes.

Example 5.12. Let A = F1〈x1, x2〉 and T ⊂ (A\{0A},≤) be the ideal T := (x4
1, x1x2, x

3
2).

T corresponds to the infinite shape
...
...
...
...
...
... . .

.

· · ·
· · ·
· · ·
· · ·
· · ·

Viewing T as an ideal in A, we have MT ' T . One observes that AnnA(MT ) = {0A}, and
hence supp(MT ) = A2.

The following is proved in [42]:

Theorem 5.13 (Theorem 5.4.2 of [42]). Let A ' F1〈x1, . . . , xn〉, and M be an indecom-
posable finite module in Modgr,fg,αA . Then M ' MT for a finite connected generalized
skew shape T ⊂ A\{0A}, and the equivalence class of T is uniquely determined.

Remark 5.14. If T is a finite skew shape, then for sufficiently large k, mk ⊂ Ann(MT ),
where m = (x1, · · · , xn) is the maximal ideal of A. Thus supp(MT ) = 0 ⊂ An.

The following extends Theorem 5.13 to the case where M is an arbitrary module in
Modgr,fg,αA .

Theorem 5.15. Let A ' F1〈x1, . . . , xn〉, and M ∈ Modgr,fg,αA be indecomposable. Then
M ' MT for a connected generalized skew shape T ⊂ A \ {0A}. In particular, for any
A\{0A}-grading on M , each homogeneous component has dimension at most 1.

Proof. If n = 1, then this follows from the classification of indecomposable modules in
Modgr,fg,αA given in Example 4.3, which are finite or infinite ladders (see Example 5.16
below).

We consider the case n = 2. Let x = x1, y = x2, A = F1〈x, y〉, and M ∈ Modgr,fg,αA

indecomposable. Choose a grading

M =
⊕
β∈Z2

≥0

Mβ,

with deg(x) = (1, 0) and deg(y) = (0, 1). Form ∈M , we write deg(m) = (degx(m), degy(m)).
Let G = {m1, · · · ,ms} be a set of generators of M . Let N ∈ Z≥0 be such that N >

degx(mi) and N > degy(mi) for i = 1, . . . , s. Let

KN =
⊕
β:

βx≥N or βy≥N

Mβ.
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Then KN is a graded F1〈x, y〉-submodule of M , and MN := M/KN is graded and finite,
being of bounded degree and finitely generated. Denote by

π : M �M/KN = MN

the canonical projection. As pointed sets (not A-modules), there is a canonical splitting
i : MN ↪→M such that π ◦ i = idMN

We first show that MN is indecomposable for every N subject to the above conditions.
Suppose not, so that MN = M ′N ⊕M ′′N for nonzero M ′N ,M

′′
N .

Let L′N and L′′N be the A-submodules of M generated by i(M ′N ) and i(M ′′N ). By the
condition onN , every element ofG is contained in either i(M ′N ) or i(M ′′N ), soM = L′N∪L′′N .
Since M is indecomposable, we have L′N ∩ L′′N 6= 0, and so there exists 0 6= m ∈ L′N ∩
L′′N , with n1 = degx(m) ≥ N or n2 = degy(m) ≥ N , as π(m) = 0. Write (n1, n2) =

(degx(m),degy(m)). We thus have m = pm′ and m = qm′′, where m′ ∈ i(M ′N ),m′′ ∈
i(M ′′N ) are distinct elements of M , and p, q ∈ A. Let (degx(m′), degy(m

′)) = (a1, a2),
(degx(m′′),degy(m

′′)) = (b1, b2). Then, we have

p = xn1−a1yn2−a2 , q = xn1−b1yn2−b2 .

Let c1 = max{a1, b1}, c2 = max{a2, b2}, and let

u = xc1−a1yc2−a2m′ ∈ i(M ′N ) ⊂ L′N , v = xc1−b1yc2−b2m′′ ∈ i(M ′′N ) ⊂ L′′N .

u 6= 0, since 0 6= m = xn1−a1yn2−a2m′ = (xn1−c1yn2−c2)u. Similarly, v 6= 0. Now
i(M ′N ) ∩ i(M ′′N ) = 0, so u, v are distinct elements of M , and

0 6= m = (xn1−c1yn2−c2)u = (xn1−c1yn2−c2)v,

contradicting the assumption thatM is of type-α . ThusMN is indecomposable, and hence
by Theorem 5.13, MN 'MSN as A-modules for a finite connected generalized skew shape
SN .

For N < N ′, we have a surjection of A-modulesMN ′ �MN , and an injection of pointed
sets λN,N ′ : i(MN ) ↪→ i(MN ′). As pointed sets again, M =

⋃
N i(MN ). We furthermore

have embeddings of posets jN : i(MN ) ↪→ A\{0A} whose image for each N is a convex
connected sub-poset of A\{0A}, making the following diagram commute:

i(MN ) i(MN ′)

A\{0A} A\{0A}

λN,N′

jN j′N

=

It is now easy to see that
⋃
N jN :

⋃
N i(MN ) → A\{0A} is an embedding of posets,

whose image is convex (since the image of each jN is) and connected - i.e. a connected
generalized skew shape.
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The argument for general n is a straightforward extension for the one given here for
n = 2. �

Example 5.16. When A = F1〈x1〉 connected skew shapes in A\{0A} correspond to finite
or infinite horizontal strips, which in the notation of Example 4.3 are the finite or infinite
ladders. The pure cycles of Example 4.3 are in ModαA but not in Modgr,αA , since they clearly
do not admit a grading by A\{0A}.

Since the category Coh(An)T is equivalent to the category Modgr,fg,αA forA = F1〈x1, · · · , xn〉,
we have:

Corollary 5.17. Every F ∈ Coh(An)T can be written as a finite direct sum

(5.3) F ' F1 ⊕ · · · ⊕ Fm,

where Fi ' M̃Ti , i = 1 · · ·m, for connected generalized skew shapes Ti ⊂ F1〈x1, · · · , xn〉 \
{0}. The decomposition (5.3) is unique up to permutation of factors.

5.4. The Hall algebra of T -sheaves. Let ∆ be the fan of a projective toric variety.
Since CohT (X∆) is a proto-abelian sub-category of Cohα(X∆), and the latter is finitary
by Theorem 4.12, it follows that so is the former. We thus have the following analogue of
Theorem 4.12:

Theorem 5.18. Let ∆ be the fan of a projective toric variety, and (X∆,OX) the corre-
sponding monoid scheme. Then

(1) CohT (X∆) is a finitary proto-abelian category.
(2) The Hall algebra HCohT (X∆) is isomorphic, as a Hopf algebra, to an enveloping

algebra U(nTX), where nTX has the indecomposable sheaves in CohT (X∆) as a basis.

To simplify notation, we will write

HT
X := HCohT (X)

whenever it’s defined.
By Proposition 5.5, if Z ⊂ X is a closed subset, or I ⊂ OX∆

is a quasicoherent sheaf of
ideals, we may also consider the Hall algebras of CohT (X∆)Z and CohT (X∆)I .

6. Examples and relations with known Lie algebras

In this section we attempt to explicitly describe the Hall algebra of CohT (X), and in
some cases categories CohT (X)Z ,CohT (X)I , when X is a toric monoid scheme such that
dim(Xk) > 1. We want to show that in contrast to the setting of projective schemes
over Fq, computations for higher-dimensional examples in the monoid setting are not only
possible, but relatively straightforward. As our Hall algebras are always isomorphic to
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enveloping algebras, it suffices to describe the corresponding Lie algebra. In this section,
by a skew shape we mean a finite generalized skew shape.

6.1. Point sheaves on An and skew shapes. We consider the example of point sheaves
on An, first investigated by the second author in [42], where we refer the interested reader
for details. The examples in this section are taken from that paper.

We view An with its standard toric structure as an open subscheme of Pn, correspond-
ing to the cone ρn (see Section 3.4). The category CohT (Pn)0 of T -sheaves supported at
the origin is then a finitary proto-abelian category, which we may identify with the cate-
gory of finite type-α F1〈x1, · · · , xn〉-modules admitting a grading. Denoting by HT

0 [n] the
corresponding Hall algebra, we have HT

0 [n] ' U(skn), where skn is the Lie algebra with
basis delta-functions supported on indecomposable sheaves in CohT (Pn)0. By Theorem
5.13 these correspond to finite connected skew shapes in F1〈x1, · · · , xn〉 \ {0} ' (Z≥0)n.

The symmetric group on Sn acts on A = F1〈x1, · · · , xn〉 by σ · xi = xσ(i) for σ ∈ Sn.
Sn-action on A induces an action the category Modgr,fg,αA by sending a module M to the
module Mσ, where the same underlying pointed set, and A-module structure is given as
follows:

(6.1) a ·m := σ(a) ·m, a ∈ A,m ∈Mσ.

The Sn-action on modules preserves indecomposability, in particular, by Theorem 5.13,
this action induces an action on skew shapes. The Sn-action on skew shapes is easily seen
to further induce an action on HT

0 [n] by Hopf algebra automorphisms. We thus have

Theorem 6.1 ([42]). The Hall algebra HT
0 [n] is isomorphic to the enveloping algebra

U(skn). The Lie algebra skn may be identified with

skn = {δ[MS ] | S a finite connected skew shape in F1〈x1, · · · , xn〉 \ {0} up to translation }

with Lie bracket

[δ[MS ], δ[MT ]] = δ[MS ] • δ[MT ] − δ[MT ] • δ[MS ]

The symmetric group Sn acts on HT
0 [n] (resp. skn) by Hopf (resp. Lie) algebra automor-

phisms.

We recall from Section 2.2 that the product in H0[n] is

(6.2) δ[MS ] ? δ[MT ] =
∑

R a skew shape

PRS,T δ[MR]

where

PRS,T := #{ML ⊂MR |ML 'MT ,MR/ML 'MS}.
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Note that the skew shapes R being summed over need not be connected. In fact, when S
and T are connected, the product (6.2) will contain precisely one disconnected skew shape
S t T corresponding to the split extension MS ⊕MT .

Example 6.2 ([42]). Let n = 2. By abuse of notation, we denote the delta-function
δ[MS ] ∈ sk2 simply by S. Let

S = T =

Then, we have

S • T = s
s s t t

+ t t
s
s s

+ s
s s

⊕ t t

T • S = s
s s
t t

+ s
s s
t t

+ t t s
s s

+ s
s s

⊕ t t

and

[S, T ] = s
s s t t

+ t t
s
s s

− s
s s
t t

− s
s s
t t

− t t s
s s

where for each skew shape we have indicated which boxes correspond to S and T .

As the above example illustrates, for connected skew shapes S, T , the multiplication
S • T in the Hall algebra involves all ways of "stacking" the shape T onto that of S to
obtain another skew shape, as well as one disconnected skew shape (which may be drawn
in several ways).

Remark 6.3. One may easily observe that the structure constants of the Lie algebra skn

in the basis of skew shapes are all −1, 0, or 1.

The co-multiplication (2.6) on HT
0 [n] can be explicitly described as follows. Suppose

that S = S1 t S2 · · · t Sk with Si connected for each i = 1, . . . , k. Then

(6.3) ∆(δ[MS ]) =
∑

I⊂{1,··· ,k}

δ[MSI ] ⊗ δ[MSIc ]

where the summation is over all subsets I ⊂ {1, · · · , k}, Ic = {1, · · · , k}\I, and

MSI :=
⊕
i∈I

MSi .

Example 6.4 ([42]). Adopting the same conventions as in the previous example, we have

∆

 ⊕


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=

 ⊕

⊗ 1 + 1⊗

 ⊕

+ ⊗ + ⊗

6.2. Point sheaves on the second infinitesimal neighborhood of the origin in
A2. Let m = (x1, x2) ⊂ F1〈x1, x2〉 be the maximal ideal of the origin in A2. In this
section we consider the category CohT (A2)m2 of coherent T -sheaves scheme-theoretically
supported on the second formal neighborhood of the origin. Embedding A2 ⊂ P2, we may
equivalently view these as sheaves supported on the second infinitesimal neighborhood of
one of the three closed points. In terms of modules, it is the category of type-α F1〈x1, x2〉-
modules admitting a grading which are annihilated by m2 = (x2

1, x1x2, x
2
x). These in turn

correspond to two-dimensional skew shapes not containing any of the following three as
sub-diagrams:

The only connected skew shapes having this property are easily seen to be of four types
(depending on whether the first/last part consists of one or two boxes):

...

A

...

B

...

C

...

D

We denote by An,Bn, Cn,Dn the corresponding diagram containing n boxes, and have:

An, n = 2k + 1, k ≥ 1

Bn, n = 2k + 1, k ≥ 1

Cn, n = 2l, l ≥ 2

Dn, n = 2l, l ≥ 1

We have in addition the generator H corresponding to the diagram with a single box,
which is special.

When computing products/commutators in the Hall algebra of CohT (A2)m2 , we keep
only those skew shapes annihilated by m2. We have for instance

Cn • Am = An+m + Cn ⊕Am

Am • Cn = Cn ⊕Am
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which yields

[Cn,Am] = An+m

Similarly, we can compute the other commutators:

[Cn,Dm] = 0

[Dn,Am] = Am+n

[Cn,Bm] = −Bm+n

[Dn,Bm] = −Bm+n

[An,Bm] = −Dm+n − Cm+n

[H,An] = −[H,Bn] = Dn+1 + Cn+1

[H, Cn] = [H,Dn] = Bn+1 −An+1

The Lie algebra n spanned by H,A2j+1,B2k+1, C2r,D2s, j ≥ 1, k ≥ 1, r ≥ 2, s ≥ 1 is
isomorphic to a Lie subalgebra k ⊂ gl2[t]:(

d(t) a(t)

b(t) c(t)

)
where a(t), b(t) are odd polynomials, with deg(a(t)) ≥ 3,deg(b(t)) ≥ 1, and c(t), d(t) are
even polynomials with deg(c(t)) ≥ 2,deg(d(t)) ≥ 4, via the isomorphism ρ : n → k given
by:

ρ(H) = E21 ⊗ t− E12 ⊗ t

ρ(An) = −E12 ⊗ tn

ρ(Bn) = E21 ⊗ tn

ρ(Cn) = −E22 ⊗ tn

ρ(Dn) = E11 ⊗ tn

where Eij denotes the 2× 2 matrix with a 1 in row i, column j, and 0’s everywhere else.

6.3. Truncations of point sheaves on A2 by height. We define the height (or number
of parts) of a connected two-dimensional skew shape S as the number of horizontal segments
making up the shape, and denote it by ht(S). For example, for

S = T =
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we have ht(S) = 2 and ht(T ) = 3 respectively. The height of a general skew shape is defined
as the maximum of the heights of the connected components, and hence ht(S⊕T ) = 3. We
also set ht(MS) := ht(S). Let CohT (A2)≤m denote the subcategory of CohT (A2) generated
by finite modules of height ≤ m. The following is straightforward:

Proposition 6.5. Let m be a positive integer and set

Im = span{δ[MS ] | ht(S) > m} ⊂ HT
0 [2].

Then

(1) CohT (A2)≤m is a proto-abelian subcategory of CohT (A2).
(2) Im is a Hopf ideal in HT

0 [2], and if m < m′, then Im′ ⊂ Im.
(3) The Hall algebra HCohT (A2)≤m

may be identified with HT
0 [2]/Im

By the last part of Proposition 6.5 we may identify HCoh(A2)T≤m
' U(sk≤m2 ), where the

Lie algebra sk≤m2 is spanned by connected two-dimensional skew shapes of height ≤ m,
and in computing products, shapes of height > m are discarded. We have surjective Lie
algebra homomorphisms sk≤m

′

2 � sk≤m2 for m ≤ m′ obtained by discarding the shapes of
height > m.

We examine here in detail the case of the Lie algebra sk≤m2 , for m = 1, 2. The skew
shapes of height 1 are simply horizontal strips of length n:

hn = · · ·

In U(sk≤1
2 ), we have

hn ? hm = hm+n + hm ⊕ hn.

HCoh(A2)T≤m
' U(sk≤1

2 ) ' Λ by mapping hn to the nth power sum, where Λ is the ring of
symmetric functions viewed as a Hopf algebra.

The shapes of height 2 are of the form

Yi,r,j = · · · j
i · · ·

where the numbers i, r, j denote respectively:

• i - the defect in the lower left hand corner (i.e. the number of boxes "missing" in
the lower left hand corner),
• j - the defect in the upper right hand corner,
• r - the total number of boxes in the diagram. Note that r = i+ j+2p, where p ≥ 1

is the number of vertical segments of length 2.

We have the following brackets in sk≤2
2 :

[Yi,r,j , Yi′,s,j′ ] = δj,i′Yi,r+s,j′ − δj′,iYi′,r+s,j
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[hn, hm] =

min(m,n)∑
k=1

Ym−k,m+n,n−k −
min(m,n)∑
k=1

Yn−k,m+n,m−k

[hn, Yi,r,j ] = Yi+n,r+n,j − Yi,r+n,j+n + θ(i− n)Yi−n,r+n,j − θ(j − n)Yi,r+n,j−n

where θ(x) = 1 if x ≥ 0 and 0 otherwise.

Example 6.6. We have for instance in sk≤2
2 :

 ,

 = −

 ,

 = + −

[
,

]
= + − −

Let gl∞ denote the Lie algebra of infinite matrices with rows and columns indexed by
Z≥0, and 0’s except on finitely many diagonals. I.e. for every M ∈ gl∞, there exists
n(M) ∈ N such that Mi,j = 0 whenever |i− j| ≥ n(M). There is an embedding

φ : sk≤2
2 ↪→ gl∞[t]

defined as follows:

φ(Yi,r,j) = Ei,j ⊗ tr

φ(hn) =
∑
k=0

(Ek+n,k ⊗ tr + Ek,k+n ⊗ tr)

We note the following:

• J2 = span{Yi,r,j} is a Lie ideal in sk≤2
2 and generates a Hopf ideal J̃2 in U(sk≤m2 )

such that

U(sk≤m2 )/J̃2 ' Λ

• span{Yi,r,i}, i ≥ 0 is an infinite-dimensional maximal abelian Lie subalgebra of sk≤2
2

6.4. The case of P1. Referring back to Section 4.4 and Proposition 4.13, we see that
passing from Cohα(P1) to CohT (P1) has the effect of discarding the cyclotomic sheaves Ci
while keeping T0,r, T∞,s and O(n). This has the effect of eliminating the factor k from the
Hall Lie algebra nαP1 :

Proposition 6.7. HT
P1 is isomorphic as a Hopf algebra to U(a), where a is as in Proposi-

tion 4.13.
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6.5. The case of P2. In this section we take up the example of HT
P2 . We view P2 as

equipped with the monoid scheme structure from Example 3.16, and recall that it is covered
by three affine open subsets isomorphic to A2:

(1) Xσ0 = MSpec(Sσ0 = 〈x1, x2〉) ' A2,
(2) Xσ1 = MSpec(Sσ1 = 〈x−1

1 , x−1
1 x2〉) ' A2,

(3) Xσ2 = MSpec(Sσ2 = 〈x1x
−1
2 , x−1

2 〉) ' A2.

The only reduced and irreducible monoid subschemes of P2 are the three closed points
p0, p1, p2 corresponding to the origins of the each A2, and three P1’s l01, l02, l12 joining
these. We may visualize this as follows:

p0 p1

p2

l02 l12

l01

6.5.1. Indecomposable T -sheaves on P2. By Theorem 5.18 HT
P2 ' U(nTP2), where nTP2 (which

is denoted by n from now on) has as basis the indecomposable T -sheaves on P2. We
begin by enumerating these. In order to do so, it is useful to classify connected two-
dimensional (possibly infinite) skew shapes S by their asymptotic behavior along the axes.
This asymptotic behavior is characterized by a pair of extended integers (Sx,Sy), 0 ≤
Sx,Sy ≤ ∞ (note that Sx,Sy may take the value ∞), where Sx (resp. Sy) denotes the
number of boxes in the intersection of S with an infinite vertical (resp. horizontal) strip
as these move out to ∞. For example, the infinite shape S:

...
...

· · ·
· · ·
· · ·

has asymptotics Sx = 3,Sy = 2. In what follows, we will say skew shapes rather than
generalized skew shapes, and when we wish to emphasize the finiteness, we will say finite
skew shapes. The following is straightforward:

Proposition 6.8. Let S be a connected skew shape in A = F1〈x, y〉. Then exactly one of
the following is true:
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• (Sx,Sy) = (0, 0). In this case S is a finite skew shape, and M̃S is a torsion sheaf
supported at the origin in A2.
• (Sx,Sy) = (k, 0) for some 1 ≤ k < ∞. In this case S is infinite, and M̃S is a
torsion sheaf supported along the x-axis in A2.
• (Sx,Sy) = (0, k) for some 1 ≤ k < ∞. In this case S is infinite, and M̃S is a
torsion sheaf supported along the y-axis in A2.
• (Sx,Sy) = (k, l) for some 1 ≤ k, l < ∞. In this case S is infinite, and M̃S is a
torsion sheaf supported along the union of the axes in A2.
• (Sx,Sy) = (∞,∞). In this case S is infinite, M̃S is torsion-free, and supp(M̃S) =

A2.

We will refer to the pair (Sx,Sy) as the type of a skew shape or corresponding module.
If A′ ' F1〈x, y〉 is another free commutative monoid on two generators, and S ∈ A′ a skew
shape, the type will depend on the choice of generators (there are two choices corresponding
to ordering).

We will view a coherent sheaf on P2 in terms of gluing data on the three patches Xσi , i =

0, 1, 2. In other words, a T -sheaf F on P2 is given by the data (Mi, φij), i, j ∈ {0, 1, 2},
where Mi ∈ Modgr,fg,αSσi

, and

(6.4) φij : M̃j |Xσi∩Xσj 7→ M̃i|Xσi∩Xσj

subject to the the cocycle condition. A subsheaf F ′ ⊂ F thus corresponds to submodules
Ni ⊂Mi compatible with the φij .

We note that each of the intersections Xσi ∩ Xσj corresponds to a distinguished open
affine subset of each copy of A2. The following shows that indecomposables on A2 are
indecomposable or 0 when restricted to these.

Proposition 6.9. Let T be a connected skew shape in A = F1〈x, y〉, and S ⊂ A a multi-
plicative subset. Then S−1MT is either 0 or indecomposable.

Proof. Let m ∈MT . If m
xayb
∈ S−1MT with a, b not both 0, then S−1MT must contain at

least one of mx ,
m
y . It follows that S

−1MT = S̃−1MT where S̃ is of the form A\p, where p
is a prime ideal, and therefore one of (0), (x), (y), (x, y). One can check directly using the
classification in Proposition 6.8 that the in each case S̃−1MT is indecomposable or 0. �

We can now proceed to classify the indecomposable T -sheaves on P2. We introduce
three classes of indecomposable sheaves, having zero, one, and two-dimensional support
respectively.

(1) Let S be a connected skew shape of type (0, 0) in F1〈x1, x2〉\{0}. Let M0 =

MS ,M1 = 0,M2 = 0, and φij = 0 for all i 6= j. We denote this sheaf TS,0. This
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is a torsion sheaf supported at p0. TS,i, i = 1, 2 may be defined similarly, yielding
torsion sheaves supported at p1 (resp. p2). TS,i is clearly indecomposable.

(2) We introduce two types of T -sheaves supported along the triangle formed by the
three lines l01, l02, l12.

We begin by observing that if S0 ⊂ Sσ0 = F1〈x1, x2〉\{0} and S1 ⊂ Sσ1 =

F1〈x−1
1 , x−1

1 x2〉\{0} are two connected skew shapes of types (a, b) and (c, d) re-
spectively, and a, b, c, d <∞, then an isomorphism

φ01 : M̃S0 |Xσ0∩Xσ1
7→ M̃S1 |Xσ0∩Xσ1

exists if and only if the matching condition b = c holds. If b = c > 0, then φ01 is
given by an integer which is the degree of the restriction of the glued sheaf to the
line l01. If b = c = 0, then φ01 is necessarily zero. The same observation obviously
applies to any pair of patches i, j ∈ {0, 1, 2}. We note also if Si ⊂ Sσi has finite
asymptotics (a, b), then M̃Si restricted to the triple intersection Xσ0 ∩Xσ1 ∩Xσ2

vanishes, which means that the cocycle condition for sheaves built out of these
modules is trivial - we need only specify φ01, φ02, φ12 without any restrictions.

For i, j ∈ {0, 1, 2} viewed as residues mod 3, consider a finite sequence of con-
nected skew shapes of type (a, b), where a, b <∞:

Si,1,Si+1,2, · · · ,Sj−1,q−1,Sj,q

and integers nr, 1 ≤ r ≤ q − 1, such that
• For each 1 ≤ e ≤ q Sk,e ⊂ Sσk , where k is viewed as residues mod 3.
• Sk,r and Sk+1,r+1 have matching non-zero type along lk,k+1.
• Si,1 has type (0, a), a > 0 and Sj,q has type (b, 0), b > 0.

Gluing M̃Sk,r to M̃Sk+1,r+1
using the φk,k+1 specified by nr, we obtain a sheaf

denoted by H[i, j, q, nr,Sk,r], which we call a helix. As the name suggests, it can
be thought of as a staircase built out of skew shapes which begins at i ∈ {0, 1, 2}
and winds counter-clockwise around the triangle of P1’s, ending at j. We note that
all helices can be made to wind counter-clockwise by reading the list backwards if
necessary.

Suppose instead that in the above data we have j = i−1 mod 3, and that Si,1,Sj,q
have types (a, b), (a′, b′) with all a, b, a′, b′ > 0 with matching type along li−1,i, and
that we are additionally given an integer nq. Note that in this case q is a multiple
of 3. Performing one additional gluing of M̃Sj,q to M̃Si,1 using nq, we obtain a sheaf
denoted by C[i, j, q, nr,Sk,r], which we call a cycle. It winds q/3 times around the
triangle analogous to the covering z 7→ zq/3 of the punctured plane.

The sheaves H[i, j, q, nr,Sk,r], C[i, j, q, nr,Sk,r] are easily seen to be indecompos-
able under the above conditions.
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(3) Let S0 ⊂ F1〈x1, x2〉\{0}, S1 ⊂ F1〈x−1
1 , x−1

1 x2〉\{0}, S2 ⊂ F1〈x1x
−1
2 , x−1

2 〉\{0} be
three connected skew shapes of types (∞,∞). To describe the gluing data, we
first minimally complete each shape Si to Si corresponding to a free module with
generator gi by "filling in" the corner. For the shape T in Example 5.12, this looks
as follows:

...
...
...
...
...
... . .

.

· · ·
· · ·

a · · ·
a · · ·
g a a a · · ·

where the boxes added to T are labeled a, and g for the generator. We thus have

M̃S0
|Xσ0∩Xσ1

' M̃S1
|Xσ0∩Xσ1

' ˜F1〈x1, x
−1
1 , x2〉

and the isomorphism φ01 is specified by an integer m01 such that g0 = x−m01
1 g1.

Similarly, the isomorphisms φ12 and φ02 are specified by integers m12,m02 such
that g1 = (x−1

1 x2)−m12g2 and g0 = x−m02
2 g2. The cocycle condition now forces

m01 = m02 = m12 = m. We denote the resulting sheaf by TF[Si,m]. It is
easily seen to be a torsion-free indecomposable sheaf. By construction, it embeds
minimally into the line bundle O(m), and there is an exact sequence

TF[Si,m] ↪→ O(m) � Q

where

Q = TU0,0 ⊕ TU1,1 ⊕ TU2,2

where the TUi,i are point sheaves as in (1), and Ui = Si\Si are finite shapes. We
can visualize the sheaves TF[Si,m] as follows:

S0 S1

S2

m

The following proposition shows that the above list is exhaustive.

Proposition 6.10. Let F be an indecomposable sheaf in CohT (P2). Then F is isomorphic
to one of TS,i, H[i, j, q, nr,Sk,r], C[i, j, q, nr,Sk,r], TF[Si,m].
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Proof. Suppose that F is an indecomposable coherent T -sheaf described in terms of gluing
data by (Mi, φij), i, j ∈ {0, 1, 2}, with Mi ∈ Modgr,fg,αSσi

.

• Suppose that one of the Mi’s, say M0, has an indecomposable summand of type
(0, 0), denotedM ′0. WriteM0 = M ′0⊕M ′′0 . Since M̃ ′0 restricted toXσ0∩(Xσ1∪Xσ2)

vanishes, Proposition 3.21 implies that M ′0 generates a summand of the form TS,0.
Since F is indecomposable, we must have F = TS,0.
• Suppose that one of Mi’s, say M0 has an indecomposable summand N0 of type

(∞,∞), and writeM0 = N0⊕K0. Ñ0|Xσ0∩Xσi is isomorphic to the structure sheaf,
and from the above classification and Proposition 3.20 it follows thatM1 = N1⊕K1,
M2 = N2 ⊕ K2 where Ni, i = 1, 2 are also of type (∞,∞), and φ02 : Ñ2 ' Ñ0,
φ01 : Ñ1 ' Ñ0 are isomorphisms over Xσ0 ∩Xσi . The cocycle condition for {φij}
the forces φ12 : Ñ2 7→ Ñ1 on Xσ1 ∩Xσ2 to be an isomorphism. It follows that F
has a summand of the form TF[Si,m], and since F is indecomposable, must be
isomorphic to it.
• If F is not isomorphic to TS,i or TF[Si,m], then eachMi must be a sum of modules
having finite type (a, a′) with at least one of a, a′ nonzero. For each i ∈ {0, 1, 2},
write

Mi = MSi,1 ⊕MSi,2 ⊕ · · · ⊕MSi,mi
with the Si,k connected. We note that if Si,k has nonzero type along li,i+1, then
φi,i+1 yields an isomorphism

(6.5) φi,i+1 : M̃Si,k |Xσi∩Xσi+1
7→ M̃Si+1,k′ |Xσi∩Xσi+1

for a unique MSi+1,k′

Consider the colored directed graph ΓF whose vertices are theMSi,k ’s, and there
is a directed edge from MSi,k to MSi+1,k′ if Si,k has nonzero type along li,i+1 and
(6.5) holds, colored by the degree of the gluing map along li,i+1. ΓF is easily
seen to have the property that each vertex has at most one incoming and at most
one outgoing edge. It is also clear that F is indecomposable if and only if ΓF

is connected. The only connected directed graphs having this property are either
ladders or pure cycles. If ΓF is a ladder, then F is a helix (i.e. of type H), and if
a pure cycle, a cycle (i.e. of type C).

�

Remark 6.11. It follows from the above classification that every indecomposable torsion-
free T -sheaf is of rank one. In particular, every locally free sheaf is a direct sum of line
bundles, as shown in [45]

By Proposition 6.10, the Hall Lie algebra n here is spanned by delta-functions supported
on isomorphism classes of the sheaves TS,i, H[i, j, q, nr,Sk,r], C[i, j, q, nr,Sk,r], TF[Si,m]
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above. It appears difficult to describe in explicit terms. We restrict ourselves to a few
remarks, intending to study its structure more closely in a future paper.

• n contains three commuting copies t0, t1, t2 of the Lie algebra sk2 from Section 6.1,
with ti spanned by the sheaves TS,i. Each ti acts on the sheaves with higher-
dimensional support via Hecke-type operators.
• Sheaves supported on each line li+1,i+2 opposite pi generate a Lie subalgebra li.
These three subalgebras are no longer mutually commuting however. Each li carries
commuting actions of ti+1 and ti+2.
• The isomorphism classes of torsion-free sheaves [TF[Si,m]] generate a commutative
subalgebra of HT

P2 . To see this suppose that F ,F ′ are indecomposable and torsion-
free, and

(6.6) F ↪→ G � F ′

is an exact sequence. By Lemma 3.18 and the above classification, F would have
to embed as a sub-sheaf of some TF[Si,m]. The cokernel of this map, if non-zero,
would be torsion. It follows that 6.6 splits, showing that [F ], [F ′] commute in HT

P2 .

Example 6.12. Consider the closed embedding ιj : P1 → P2 whose image is the P1

lj+1,j+2 opposite the vertex pj , and let Oj(n) denote ιj,∗OP1(n). For instance, O2(n) may
be described in terms of gluing data as (MS0 ,MS1 ,MS2 , φij), where MS2 = 0, S0,S1 are
the infinite strips

S0 : g · · ·

S1 : h · · ·

where the generator g of MS0 is annihilated by x2, the generator h of MS1 is annihilated
by by x−1

1 x2, φ01 identifies h with xn1g, and φ20 and φ12 are zero. One can ask about the
Lie subalgebra k generated by {Oi(n)}, i ∈ {0, 1, 2}, n ∈ Z inside n.

Let TF denote the free commutative subalgebra of HT
P2 generated by the isomorphism

classes of torsion-free sheaves, and let J ⊂ TF denote the ideal generated by the isomor-
phism classes of those torsion-free sheaves which are not locally free. Let Bun denote the
set of isomorphism classes of locally free sheaves on P2, which are simply direct sums of line
bundles. TF/J is isomorphic to the polynomial ring on xn = [O(n)], n ∈ Z, which in turn
may be identified with the vector space of functions with finite support on Bun, where the
monomial xn1xn2 · · ·xnr is identified with the delta-function on [O(n1)⊕O(n2) · · ·⊕O(nr)].

One checks that for i ∈ {0, 1, 2}, n ∈ Z, [Oi(n),TF] ⊂ TF and [Oi(n), J] ⊂ J. The
adjoint action of k therefore descends to Q[xn] ' TF/J by derivations.

There is for each i, n a unique non-split extension

O(n− 1) ↪→ O(n) � Oi(n)
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For m 6= n− 1, every extension

O(n− 1) ↪→ F � Oi(m)

with F locally free is split (though there are in general several torsion-free extensions).
Similarly, every extension

Oi(m) ↪→ F � O(n)

is split. This yields the identity

(6.7) [Oi(n),O(m)] = δn−1,mO(n)

mod J, showing that under the above identifications, Oi(n) acts by xn∂n−1. Letting g̃l∞

denote the Lie algebra of infinite matrices spanned by Ei,j , i, j ∈ Z, the previous analysis
shows that there exists a surjective Lie algebra homomorphism

ν : k � g̃l
−
∞

where g̃l
−
∞ denotes the lower-triangular part, spanned by Ei,j with i > j. The kernel of ν is

large however, as it contains the ideal generated by Oi(n)−Oj(n) for all i, j ∈ {0, 1, 2}, n ∈
Z.
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