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ABSTRACT. Let Z ⊂ Ak be an affine scheme over C and J Z its jet scheme.
It is well-known that C[J Z], the coordinate ring of J Z, has the structure of a
commutative vertex algebra. This paper develops the orbifold theory for C[J Z].
A finite-order linear automorphism g of Z acts by vertex algebra automorphisms
on C[J Z]. We show that C[J gZ], where J gZ is the scheme of g–twisted jets
has the structure of a g-twisted C[J Z] module. We consider spaces of orbifold
coinvariants valued in the modules C[J gZ] on orbicurves [Y/G], with Y a
smooth projective curve and G a finite group, and show that these are isomorphic
to C[ZG].

1. INTRODUCTION

Let Z ⊂ Ak be an affine scheme over C, and

J Z := HomSch(Spec C[[t]], Z)

its jet scheme. It is well-known [4, 3] that the coordinate ring C[J Z] has the
structure of a commutative vertex algebra. Such vertex algebras often arise
as quasiclassical limits of noncommutative vertex algebras, and have found a
number of applications, such as in the study of chiral differential operators and
the invariant theory of vertex algebras [1, 2, 8]. This paper is devoted to the
orbifold theory of the commutative vertex algebra C[J Z], or more specifically, to
the construction of twisted modules for C[J Z] and coinvariants valued in such.

Given a linear automorphism g : Z→ Z of finite order m, we obtain an induced
action on J Z and hence on C[J Z] by vertex algebra automorphisms. We may
also associate to this data the g–twisted jet scheme

J gZ := {x(t1/m) ∈ Hom(Spec C[[t1/m]], Z)|x(e2π i/mt1/m) = g(x(t1/m))}

of g-equivariant jets. An abbreviated version of our result is the following :
1
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Theorem (4.1). C[J gZ] carries the structure of g–twisted C[J Z]–module.

Suppose now that Y is a smooth projective curve with an effective action of the
group G. We proceed to study the space of coinvariants for the vertex algebra
C[J Z] on the orbicurve (or stacky curve) [Y/G]. We follow the approach of
[5], which entails defining coordinate-independent versions of twisted vertex
operators as sections of an certain sheaf on [Y/G]. More precisely, we use the
g–twisted module structure on C[J gZ] to produce an equivariant section Yy

near the point [y/〈g〉]. Using the sections Yy, we define a space of coinvariants
HG,Z(Y, ỹ1, · · · , ỹs) for the vertex algebra C[J Z] valued in the twisted modules
C[J gZ]. Our result is as follows:

Theorem (5.2). HG,Z(Y, ỹ1, · · · , ỹs) is isomorphic to C[ZG] - the coordinate ring
of the fixed-point set of G on Z,

When G is the trivial group, and there are no twisted module insertions, the space
of coinvariants is simply C[Z], which recovers a result proven in section 9.4.4 of
[4].

The outline of the paper is as follows. In section 2 we recall some basics on
vertex algebras and their twisted modules. Section 3 reviews the construction of
jet schemes. In section 4 we prove Theorem 4.1. Finally, in section 5 we recall
the coordinate-independent construction or orbifold coinvariants from [5], and
prove Theorem 5.2.

Acknowledgments: The author gratefully acknowledges the support of a Simons
Foundation Collaboration Grant, as well the hospitality of the Perimeter Institute
where part of this work was completed.

2. VERTEX ALGEBRAS AND TWISTED MODULES

In this section, we recall some basic definitions regarding vertex algebras and
their twisted modules. We refer the reader to [4, 6] for further information
regarding vertex algebras.

Definition 2.1. A vertex algebra is a vector space V equipped with:
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• a linear map

Y : V → End(V)[[z, z−1]]

a→ Y(a, z) = ∑
n∈Z

a(n)z
−n−1

• a vector 1 ∈ V, called the vacuum vector,
• a linear operator T : V → V, called the translation operator.

which are required to satisfy the following properties:

(1) Y(Ta, z) = ∂zY(a, z),
(2) Y(1, z) = idV ,
(3) Y(a, z)1 ∈ V[[z]] and a(−1)1 = a,
(4) For m, n, k ∈ Z

∑
j≥0

(
m
j

)
(a(n+ j)b)(m+k− j)

= ∑
j≥0

(−1) j

(
n
j

)(
a(m+n− j)b(k+ j) − (−1)nb(n+k− j)a(m+ j)

)
.

Example 2.1 (Commutative Vertex Algebras). Let A be a commutative algebra
over C equipped with a derivation TA. We may give A the structure of vertex
algebra by taking V = A, T = TA, 1 = 1A, and defining

Y(a, z) = ezT(a) = ∑
n≥0

zn

n!
Tn(a)

Conversely, given any vertex algebra V such that Y(a, z) ∈ V[[z]], ∀a ∈ V, the
operation ab := Y(a, z)b|z=0 makes V into a commutative algebra with derivation
T. We note that for commutative vertex algebras, Y is multiplicative, i..e

Y(ab, z) = Y(a, z)Y(b, z).

�

A vertex algebra automorphism consists of a linear map g : V → V such that

Y(g(a), z) = gY(a, z)g−1 ∀a ∈ V,

or equivalently, such that

g(a)(n)g(b) = g(a(n)b) ∀a, b ∈ V.
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For an automorphism g of V of finite order m, set

Vr = {u ∈ V | gu = ζr
mu}, 0 ≤ r ≤ m− 1,

where ζm = exp (2π i/m). We recall the definition of g-twisted V-modules:

Definition 2.2. Let g be an automorphism of V of order m. A g-twisted V-module
M is a vector space equipped with a linear map

YM : V → End(M)[[z1/m, z−1/m]]

a→ YM(a, z) = ∑
n∈ 1

m Z

a(n)z
−n−1

which satisfies the following conditions:

(1) YM(a, z1/m) = ∑i∈r/p+Z uiz−i−1 for a ∈ Vr.
(2) YM(a, z1/m)v ∈ M((z1/m)) for a ∈ V and v ∈ M.
(3) YM(1, z1/m) = idM.
(4) For a ∈ Vr, b ∈ Vs, m ∈ r/T + Z, n ∈ s/T + Z, and l ∈ Z,

∞
∑
i=0

(
m
i

)
(al+ib)m+n−i

=
∞
∑
i=0

(
l
i

)
(−1)i(al+m−ibn+i + (−1)l+1bl+n−iam+i

)
.

We note for future reference that the property

(2.1) YM(Ta, z1/m) = ∂zYM(a, z1/m)

holds in any twisted modulle M.

Remark 2.1. It follows from property (4) above by taking l = −1 that if V is a
commutative vertex algebra as in Example 2.1, then YM is multiplicative, i.e.

YM(ab, z1/m) = YM(a, z1/m)Y(b, z1/m).

3. JET SCHEMES

Let Z ⊂ Ak be an affine scheme. We write Z = Spec(A), where

A = C[x1, · · · , xk]/(P1, · · · , Pr)
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for some polynomials P1, · · · , Pr ∈ C[x1, · · · , xk]. Recall that the jet scheme of Z is
the scheme J Z defined by the property

HomSch(Spec R,J Z) = HomSch(Spec R[[t]], Z)

for any commutative C–algebra R. J Z therefore represents the space of maps
from the formal disk D = Spec C[[t]] to Z. Writing a map D→ Ak as

xi(t) = ∑
n≤0

xi,nt−n, 1 ≤ i ≤ k,

J Z may be explicitly described as Spec A∞, where

(3.1) A∞ = C[x1,n, x2,n, · · · , xk,n]n≤0/(P1,n, · · · , Pr,n)

and

(3.2) Pi,n =
∂n

t
n!

Pi(x1(t), x2(t), · · · , xk(t))|t=0

Identifying the variables xi with xi,0 we obtain a C–algebra homomorphism
A→ A∞ which is dual to the canonical projection

µ : J Z→ Z

that evaluates a jet at t = 0.

Suppose now that g : Ak → Ak is a linear automorphism of order m. After a
linear change of coordinates we may diagonalize g such that its action is given by

(3.3) g(xi) := ξαi
m xi

with ξm = exp(2π i/m). Let

J gAk = {x(t1/m) ∈ Hom(Spec C[[t1/m]], Ak)|x(ξmt1/m) = g(x(t1/m))}.

We refer to J gAk as the scheme of g–twisted jets to Ak. It is the closed subscheme
of JAk = Hom(Spec C[[t1/m]], Ak) consisting of fixed points under the action
of g by g(x(t1/m)) := g−1x(ξmt1/m). Writing

xi(t) = ∑
n∈ 1

m Z≤0

xi,nt−n

we see that

J gAk = Spec C[xi,n], i = 1 · · · k, n ∈ αi

m
+ Z, n ≤ 0.
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Suppose furthermore that the action of g on Ak preserves the affine scheme Z
above, or, in other words, that g preserves the ideal (P1, · · · , Pr). We may then
consider the scheme J gZ of g–twisted jets to Z, where

J gZ := {x(t1/m) ∈ Hom(Spec C[[t1/m]], Z)|x(ξmt1/m) = g(x(t1/m))}

We can write J gZ = Spec Aσ∞, where

(3.4) Ag∞ = C[x1,n, x2,n, · · · , xk,n]/(Pg
1,n, · · · , Pg

k,n) n ∈ αi

m
+ Z, n ≤ 0.

and Pg
i,n is the coefficient of tn in Pi(x1(t), x2(t), · · · , xk(t))

4. TWISTED MODULES FROM TWISTED JETS

Let Z ⊂ Ak be an affine scheme. The algebra A∞ = C[J Z] from (3.1) is
equipped with a derivation T defined by

T · xi,n = −(n− 1)xi,n−1

We can write the polynomials Pi,n in 3.2 as

Pi,n =
Tn

n!
Pi,0

and thereby write

(4.1) A∞ = C[J Z] = C[JAk]/(TnPi,0), 1 ≤ i ≤ r, n ≥ 0.

As explained in Example 2.1 (A∞, T) carries a commutative vertex algebra
structure

Y : A∞ → End(A∞)[[z, z−1]]

Y(a, z) = ezT(a) = ∑
n≥0

Tn(a)
n!

zn

Let g be an automorphism of Ak of finite order m inducing an automorphism
of Z ⊂ Ak. g acts on J Z by sending x(t) ∈ J Z to gx(t) := g(x(t)), inducing
an algebra automorphism g̃ of A∞ determined by g̃(xi,n) := g(xi)n. After
diagonalizing g as in 3.3, this action is given by g̃(xi,n) = ξ

αi
m xi,n. g̃ commutes

with T, inducing a vertex algebra automorphism of A∞. Let Ag∞ = C[J gZ] as in
3.4.
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Theorem 4.1. Ag∞ carries the structure of a g̃–twisted A∞ vertex algebra module given
by the assignment

(4.2) Yg : A∞ → End Ag∞[[z1/m, z−1/m]]

where

(4.3) Yg(xi,0, z1/m) = ∑
n∈αi

m +Z,n≤0

xi,nz−n

and

(4.4) Yg(xi1 ,n1 · · · xis ,ns , z1/m) :=
s

∏
j=1

∂
−n j
z Y(xi j ,0, z1/m)

Proof. It follows from a twisted version of the reconstruction theorem for vertex
operators in [7] that C[J gAk] has the structure of g̃-twisted C[JAk]–module
with the field assignment 4.3. It then follows from the multiplicativity of Yg (see
Remark 2.1 ) and the property 2.1 that Yg is defined by 4.4 on general elements
of C[JAk]. It remains to show that the twisted module structure descends to the
quotients A∞, Ag∞ . We have

Yg(Pi,n, z1/m) = Yg(
Tn

n!
Pi,0, z1/m) =

∂n
z

n!
Yg(Pi,0, z1/m)

=
∂n

z
n!

Pi(x1(z1/m), ..., xk(z1/m))

It follows that if P lies in the ideal generated by the Pi,n, then the coefficients of
the field Yg(P, z1/m) lie in the ideal generated by the Pg

j,m, hence that Yg induces

a well-defined structure on Ag∞ as a g̃–twisted A∞–module. �

4.1. Quasi-conformal structure. We recall the quasi-conformal structure on the
vertex algebra A∞ following [4]. It will be used to define coordinate-independent
versions of twisted vertex operators in the next section. Let AutO denote the
group of algebra automorphisms of C[[z]]. An automorphism ρ ∈ AutO is
determined by where it sends the generator z, and can be written as

ρ(z) = a1z + a2z2 + · · ·

where a1 6= 0. We think of AutO as the automorphism group of the formal disk
D = spec C[[z]] preserving the origin. The Lie algebra of AutO is spanned by
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the vector fields Ln = −zn+1∂z, n ≥ 0, satisfying the commutation relations

[Lm, Ln] = (n−m)Ln+m

The action of AutO on Spec C[[z]] induces an action on the jet scheme J Z and
hence on A∞ = C[J Z]. The action of Lie(AutO) may be written explicitly as

Lm →
k

∑
i=1

∑
n<0
−nxi,n

∂

∂xi,n−m

Consider now the map

fm : Spec C[[z1/m]]→ Spec C[[z]]

induced by the inclusion C[[z]] ⊂ C[[z1/m]]. We think of Spec C[[z1/m]] as an m-th
order ramified cover of Spec C[[z]]. Let Aut(m)O be the group of automorphisms
of C[[z1/m]] preserving the subring C[[z]]. ψ ∈ Aut(m)O may be written as

ψ(z1/m) = ∑
n≥0

a 1
m+nz

1
m+n

where a 1
m 6=0. Aut(m)O can be thought of as the group of m-th roots of coordinate

changes on Spec C[[z]]. There is a short exact sequence of groups

1→ Z/mZ→ Aut(m)O hm→ AutO → 1

where hm(ψ)(z) = (ψ(z1/m))m. The Lie algebra of Aut(m)O is spanned by
the vector fields L̃n = −z1/m+n∂z1/m , n ≥ 0, and hm induces a Lie algebra
isomomorphism

hm,∗ : Lie(Aut(m)O)→ Lie(AutO)

L̃n → mLn

The action of Aut(m)O on Spec C[[z1/m]] induces an action on J gZ and hence on
Ag∞. The action of Lie(Aut(m)O) may be written explicitly as

L̃r →
k

∑
i=1

∑
n∈αi/m+Z,n<0

−nmxi,n
∂

∂xi,n−r
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5. COINVARIANTS AND CONFORMAL BLOCKS

In this section, we study the spaces of coinvariants and conformal blocks for
the vertex algebra A∞ on a stacky curve (i.e. orbicurve) with values in twisted
modules of type Ag∞. We begin by briefly recalling the definition and construction
of these spaces following the approach in [5], where we refer the reader for
details.

Let Y be a smooth complex projective curve. Given a point y ∈ Y, we denote
by Oy the local ring at y, Ôy its completion, and m̂y ⊂ Ôy the maximal ideal.
We refer to a generator of m̂y as a formal coordinate at y. Given such a formal
coordinate z at y, we may canonically identify Ôy with C[[z]], and m̂y with zC[[z]].
Let

Ŷ = {(y, ty)|y ∈ Y, ty ∈ Ôy, (ty) = m̂y}

be the bundle of formal coordinates over Y. Ŷ is an AutO–principal bundle,
where the latter acts by changes of formal coordinates. AutO acts on A∞ as
explained in section 4.1, and we may therefore form the associated bundle

(5.1) A = Ŷ ×
AutO

A∞
Given an open subset U ⊂ Y equipped with an etale coordinate f : U → C, we

obtain a section, hence trviailization

j f : U → Ŷ|U
y→ (y, f − f (y))

This induces a trivialization of A

j̃ f : U × A∞ → A
(y, p(xi,n))→ [y, f − f (y), p(xi,n)]

where the notation [y, f − f (y), p(xi,n)] is used to denote the equivalence class of
element of A whose Ŷ component is (y, f − f (y)) and whose A∞ component is
p(xi,n).

A is a bundle of commutative algebras over Y, and denoting by Ay the fiber of
A at y ∈ Y, and Spec Ôy by Dy we have a canonical identification

SpecAy = Hom(Dy, Z)
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The relative spectrum SpecA → Y is therefore identified with the bundle of jets
of sections of Y × Z → Y, which we denote JZ×Y/Y. A carries a canonical flat
connection, which in a local coordinate z is given by ∇∂z = ∂z − T. Horizontal
sections ofA over U ⊂ Y are holomorphic maps U → Z, and since Y is projective
and Z affine, global horizontal sections are constant maps to Z.

Remark 5.1. Note that the subring A ⊂ A∞ generated by the images of xi,0 forms
a trivial AutO sub-representation of A∞. Forming the associated bundle 5.1 and
taking relative spectra, we obtain the canonical map

µ : JZ×Y/Y → Z

which associates to the jet of a sectionφ ∈ Hom(Dy, Z) its valueφ(y).

Suppose now that G is a finite group acting effectively on Y, and that G acts on
Ak preserving Z ⊂ Ak. We may then define an action of G on A by

g · [y, ty, p(xi,n)] = [gy, ty ◦ g−1, p(xi,n ◦ g−1)]

which commutes with the flat connection ∇. This G–equivariant structure on A
allows us to descend it to a sheaf of algebras AG over the orbicurve (or stacky
curve) [Y/G] equipped with a flat connection ∇G.

Denote by

π : Y → [Y/G]

the projection to the quotient. Points of [Y/G] will be denoted by ỹ1, ỹ2, · · · .
Given ỹ ∈ [Y/G], we may write

ỹ = [y/Gy],

where y ∈ π−1(ỹ), and Gy is the stabilizer of y in G. A point ỹ with non-trivial
Gy is called a stacky point. It is well-known that Gy cyclic, and we may choose a
generator g ∈ Gy and an etale coordinate z1/m in a neighborhood U centered at
y, with m = |Gy|, such that z1/m ◦ g−1 = ξmz1/m. We call a coordinate possessing
this property special. The formal neighborhood of ỹ in [Y/G] can be described as
the stack

[Dy/Gy] = [Dy/〈g〉]
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The twisted module structure on Ag∞, g ∈ G may be used to construct local
sections of A∗G on [Y/G] as follows. Let

JỹZ := Hom([Dy/Gy], [Z/Gy])

JỹZ is isomorphic to

Spec C[[t1/m]] ×
Aut(m)O

J gZ

and the choice of special formal coordinate z1/m allows us to identify JỹZ with
the twisted jet scheme J gZ. We thus obtain an isomorphism

λz1/m : Aỹ := C[JỹZ]→ Ag∞.

Denote by
Yg : A∞ → End Ag∞[[z1/m, z−1/m]]

the operator associated with the twisted vertex algebra module structure from
Theorem 4.1, Ky the field of fractions of Ôy, and D×y = SpecKy. We have Ky '
C((z1/m)).

We proceed to define a section

Yỹ ∈ Γ([D×y /Gy],A∗G ⊗ End(Aỹ)).

Note that z = (z1/m)m is an etale coordinate on U\y, and therefore yields a
trivialization

j̃z : (U\y)× A∞ → A|U\y

which may be pulled back to D×y . We define Yỹ by the property that

(5.2) 〈λt
z1/m(φ),Yỹ( j̃z(p)) · λ−1

z1/m(q)〉 := 〈φ, Yg(p, z1/m) · q〉 ∈ C((z1/m))

whereφ ∈ (Ag∞)∗, p ∈ A∞, q ∈ Ag∞. The following is an immediate consequence
of Theorem 5.1 of [5], and provides a coordinate-independent description of the
twisted vertex operation Yg.

Theorem 5.1. The section Yỹ is independent of the choice of special coordinate z1/m and
point y ∈ π−1(ỹ), and thus defines a canonical element

Yỹ ∈ Γ([D×y /Gy],A∗G ⊗ End(Aỹ)).

Remark 5.2. We think of the stack [D×y /Gy] as a "punctured formal disk" around
ỹ ∈ [Y/G].
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We now define the spaces of coinvariants and conformal blocks for the
commutative vertex algebra A∞ on [Y/G]. Let {ỹ1, · · · , ỹs} be a non-empty set
of points of [Y/G] which includes all the stacky points. Let

Y◦ = Y\π−1(ỹ1) ∪ · · · ∪ π−1(ỹs).

We have

[Y◦/G] = Y◦/G = [Y/G]\{ỹ1, · · · , ỹs}.

Let

Aout = Γ([Y◦/G],AG ⊗Ω1),

or equivalently, the G–invariant sections of A⊗Ω1 over Y◦. For each ỹ j, there is
a map

α j : Aout → End(Aỹ j
)

given by

ω ∈ Aout → Resỹ j
〈ω,Yỹ j

〉 ∈ End(Aỹ j
)

ω ∈ Aout thus acts on Aỹ1
⊗ · · · ⊗ Aỹs by

s · (a1 ⊗ · · · ⊗ as) :=
s

∑
j=1

a1 ⊗ · · · ⊗α j(s) · a j ⊗ · · · ⊗ as

Definition 5.1. Let G, Y, Z, ỹ1, · · · , ỹs ∈ [Y/G] be as above. The space of
coinvariants for the vertex algebra J Z on the orbicurve [Y/G] is

HG,Z(Y, ỹ1, · · · , ỹs) := Aỹ1
⊗ · · · ⊗ Aỹs /Aout · (Aỹ1

⊗ · · · ⊗ Aỹs)

where Aout · (Aỹ1
⊗ · · · ⊗ Aỹs) denotes the ideal generated by Aout in the algebra

Aỹ1
⊗ · · · ⊗ Aỹs).

The dual space

CG,Z(Y, ỹ1, · · · , ỹs) := HomC(HG,Z(Y, ỹ1, · · · , ỹs), C)

is called the space of conformal blocks for the vertex algebra J Z on the orbicurve
[Y/G].

Remark 5.3. HG,Z(Y, ỹ1, · · · , ỹs), being the quotient of a commutative algebra by
an ideal, has the structure of a C-algebra.



TWISTED MODULES AND CO-INVARIANTS FOR COMMUTATIVE VERTEX ALGEBRAS OF JET SCHEMES13

The definition of CG,Z(Y, ỹ1, · · · , ỹs) above is given in terms of the of the
orbicurve [Y/G] and the sheaf AG on [Y/G]. As explained in [5], by using the
strong residue theorem, we may restate the definition in terms of curve Y and the
G–equivariant structure on A as follows:

Definition 5.2. Let G, Y, Z, ỹ1, · · · , ỹs ∈ [Y/G] be as above. Choose y j ∈ π−1(ỹ j)

for j = 1, · · · , s. The space of conformal blocks for the vertex algebra J Z on the
orbicurve [Y/G] is

CG,Z(Y, ỹ1, · · · , ỹs) :=ϕ ∈ (Aỹ1
⊗ · · · Aỹs)

∗

such that
∀ a1 ∈ Aỹ1

, · · · , as ∈ Aỹs

the sections

(5.3) 〈ϕ, a1 ⊗ · · · ⊗ Yỹ j
· a j ⊗ · · · ⊗ as〉 ∈ Γ(D×y j

,A∗) j = 1, · · · , s

extend to a single G–invariant horizontal section Yϕ of A∗ on Y◦.

Remark 5.4. As explained in [5], the space CG,Z(Y, ỹ1, · · · , ỹs) is independent of
the choice of y j ∈ π−1(ỹ j). This choice is made only to provide a concrete model
of the formal punctured neighborhood of ỹ j ∈ [Y/G] as [D×y j

/Gy j ]

We now state our main result regarding the spaces HG,Z(Y, ỹ1, · · · , ỹs). Denote
by ZG ⊂ Z the closed sub-scheme of G–fixed points, and C[ZG] its coordinate
ring.

Theorem 5.2. The space of coinvariants HG,Z(Y, ỹ1, · · · , ỹs) is isomorphic to C[ZG].

Proof. By remark 5.3, HG,Z(Y, ỹ1, · · · , ỹs) has the structure of commutative
C–algebra. Let

ϕ : HG,Z(Y, ỹ1, · · · , ỹs)→ C

be a closed point of Spec HG,Z(Y, ỹ1, · · · , ỹs). Then in particular, ϕ ∈
CG,Z(Y, ỹ1, · · · , ỹs), and we denote by ωϕ ∈ Γ(Y◦,A∗) the G–invariant
horizontal section of A∗ which near y j ∈ π−1(ỹ j) agrees with

〈ϕ, 1⊗ · · · ⊗ Yỹ j
· 1⊗ · · · ⊗ 1〉 ∈ Γ(D×y j

,A∗)

for j = 1, · · · , s. As explained in Proposition of [4], for each y ∈ Y◦ the restriction

ωϕ : Ay → C
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is a ring homomorphism, whose associated point of the jet scheme Hom(Dy, Z)
is the jet at y of a map

hϕ : Y◦ → Z.

The G–invariance ofωϕ ensures that hϕ is G–invariant as well, i.e. satisfies hϕ(g ·
y) = g · hϕ(y). We now show that hϕ extends to all of Y. It follows from Remark
5.1 that the composition

C[Z]→ Ay
ωϕ→ C

is simply the map
p→ p(hϕ(y))

If y j ∈ π−1(ỹ j), then after fixing a special coordinate z1/m near y j, we have that
on D×y j

,

(5.4) ωϕ( j̃z(p)) = 〈ϕ, Y(p, z1/m) · 1〉 ∈ C((z1/m))

However, note that for p ∈ C[Z] ⊂ A∞, Y(p, z1/m) ∈ C[[z1/m]]. Thus, the limit
z1/m → 0 is well-defined, showing that p(hϕ(y)) is well-defined, hence that hϕ
extends to y j. Since Y is projective, and Z affine, hϕ is constant. The G–invariance
forces the image to lie in ZG.

�

Remark 5.5. When G is trivial, and s = 1, we recover a result proven in section
9.4.4 of [4] identifying the space of one-point coinvariants of the vertex algebra
A∞ on Y with C[Z].
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