> MA 412 - Complex Variables
> Exam \#1

## Name:

Instructions: To receive full credit you must show all work. Explain your answers fully and clearly. You may refer to theorems/facts in the book or from class. No calculators, books or notes of any form are allowed. Good luck!

| Question | Score | Out of |
| :---: | :---: | :---: |
| 1 |  | 12 |
| 2 |  | 12 |
| 3 |  | 10 |
| 4 |  | 16 |
| 5 |  | 10 |
| 6 |  | 13 |
| 7 |  | 12 |
| Total |  | 100 |

1. (12 points)

- Write

$$
\frac{4}{-i-\sqrt{3}}
$$

in exponential form

- Write

$$
(-3+3 i)^{27}
$$

in rectangular form
2. (12 points)

Find the sixth roots of -4 , i.e.

$$
(-4)^{1 / 6}
$$

in both exponential and rectangular form, AND sketch them
3. (10 points)

Sketch the region described by the inequality

$$
|2 \bar{z}+6-6 i| \geq 1
$$

## 4. (16 points)

- Let $D$ be the first quadrant, i.e. $D=\{z=x+i y \mid x \geq 0, y \geq 0\}$. Describe algebraically and sketch the image of $D$ under the map $f(z)=\bar{z}^{2}$
- Find a region $R$ such that the image of $R$ under the map $f(z)=z^{2}$ is the set of points in the second quadrant lying between the circles $|z|=1$ and $|z|=4$ Give an algebraic description of $R$ and sketch $R$.

5. (10 points)

Show that if $|z|=3$ then

$$
\left|\frac{2 \bar{z}^{2}-z+4 i}{z+1}\right| \leq \frac{33}{2}
$$

6. (15 points)

Evaluate each of the following limits, or state why it does not exist.
(a)

$$
\lim _{z \rightarrow \infty} \frac{3 z^{2}+(1+2 i) z-i}{i z^{2}+4}
$$

(b)

$$
\lim _{z \rightarrow \infty}\left(2 z^{2}+z-3\right)
$$

(c)

$$
\lim _{z \rightarrow \infty} \frac{z}{\bar{z}}
$$

7. (13 points) Let

$$
f(z)=\left(\frac{x^{3}}{3}+2 y\right)+i\left(\frac{y^{2}}{2}-2 x\right)
$$

- Determine the set of points where the function $f(z)$ is differentiable, and calculate its derivative $f^{\prime}(z)$ there.
- Determine the set of points at which $f(z)$ is analytic. Explain your reasoning.

8. (12 points) Give an example of a function $f(z)$ satisfying the following properties
(a) $f(z)$ is analytic everywhere except for the three pointst $z=2 i,-2 i, 1$, where it has singularities.
(b) $f(0)=0$, and $f(z)$ has no other zeros.
(c) $\lim _{z \rightarrow \infty} f(z)=4$.

Explicitly verify that your $f(z)$ has the required properties.

