> MA 412 - Complex Variables
> Exam \#2

Name:

Instructions: To receive full credit you must show all work. Explain your answers fully and clearly. You may refer to theorems/facts in the book or from class. No calculators, books or notes of any form are allowed. Good luck!

Question	Score	Out of
1		18
2		12
3		16
4		10
5		10
6		24
7		100
Total		

1. (18 points)

- Define what it means for a function $f(z)$ to be entire.
- Is the function $f(z)=e^{z} \sin (2 z-1)$ entire ? Explain your reasoning.
- Is the function $f(z)=\sqrt{z}=\exp \left(\frac{1}{2} \log (z)\right)$ entire ? Explain your reasoning.

2. (12 points)

Evaluate the following multivalued expressions

- $\log (-2+2 i)$
- $(-i)^{i}$

3. (16 points)

Determine the region in which the following functions are analytic, carefully drawing the branch cuts and singularities. Explain your reasoning.

$$
\frac{\log (3-2 z)}{z^{2}+16}
$$

-

$$
\sqrt{z^{2}+25}
$$

where the principal branch of the square root is taken.

4. (10 points)

Compute the contour integral

$$
\int_{C} \bar{z} d z
$$

where C is the contour from $-3 i$ to 3 along the circle $|z|=3$ by parametrizing C and direct evaluation.

5. (10 points)

Evaluate the contour integral

$$
\int_{C} \frac{d z}{\sqrt{z}}
$$

where C is the contour from $z=1+i$ to $2+4 i$ along the parabola $y=x^{2}$ and \sqrt{z} denotes the principal branch. (Hint: find an antiderivative).
6. (10 points)

Show that

$$
\left|\int_{C} \frac{z-1}{z^{3}+2} d z\right| \leq \frac{12}{25} \pi
$$

where C is the part of the circle $|z|=3$ from 3 to -3 . Clearly show each step in your estimate and which inequalities are being used.
7. (24 points)

Let

$$
f(z)=\frac{z^{3}}{(z+2)^{2}(z-4)}
$$

Evaluate the following contour integrals, in each case explaining your reasoning and referring to the relevant theorems.
(a) $\int_{C_{1}} f(z) d z$ where C_{1} is the positively oriented circle $|z-i|=1$
(b) $\int_{C_{2}} f(z) d z$ where C_{2} is the positively oriented square with corners at $-3-i,-i, 2 i,-3+2 i$.
(c) $\int_{C_{3}} f(z) d z$ where C_{3} is the negatively oriented circle $|z-5|=2$.
(d) $\int_{C_{4}} f(z) d z$ where C_{4} is the positively oriented circle $|z|=8$. (Hint: how does this integral relate to those over C_{2} and C_{3} ?).

