MA 412 – Complex Variables Exam#2

Name:

Instructions: To receive full credit you must show all work. Explain your answers fully and clearly. You may refer to theorems/facts in the book or from class. No calculators, books or notes of any form are allowed. Good luck!

Question	Score	Out of
1		18
2		12
3		16
4		10
5		10
6		10
7		24
Total		100

1. (18 points)

• Define what it means for a function f(z) to be entire.

• Is the function $f(z) = e^z \sin(2z - 1)$ entire ? Explain your reasoning.

• Is the function $f(z) = \sqrt{z} = \exp(\frac{1}{2}Log(z))$ entire ? Explain your reasoning.

2. (12 points) Evaluate the following multivalued expressions

• $\log(-2+2i)$

• $(-i)^i$

3. (16 points)

•

•

Determine the region in which the following functions are analytic, carefully drawing the branch cuts and singularities. Explain your reasoning.

 $\frac{Log(3-2z)}{z^2+16}$

 $\sqrt{z^2 + 25}$,

where the principal branch of the square root is taken.

4. (10 points)

Compute the contour integral

$$\int_C \overline{z} dz$$

where C is the contour from -3i to 3 along the circle |z| = 3 by parametrizing C and direct evaluation.

5. (10 points)

Evaluate the contour integral

$$\int_C \frac{dz}{\sqrt{z}}$$

where C is the contour from z = 1 + i to 2 + 4i along the parabola $y = x^2$ and \sqrt{z} denotes the principal branch. (Hint: find an antiderivative).

6. (10 points) Show that

$$|\int_C \frac{z-1}{z^3+2} dz| \le \frac{12}{25}\pi$$

where C is the part of the circle |z| = 3 from 3 to -3. Clearly show each step in your estimate and which inequalities are being used.

7. (24 points) Let

$$f(z) = \frac{z^3}{(z+2)^2(z-4)}.$$

Evaluate the following contour integrals, in each case explaining your reasoning and referring to the relevant theorems.

(a) $\int_{C_1} f(z) dz$ where C_1 is the positively oriented circle |z - i| = 1

(b) $\int_{C_2} f(z)dz$ where C_2 is the positively oriented square with corners at -3 - i, -i, 2i, -3 + 2i.

(c) $\int_{C_3} f(z) dz$ where C_3 is the negatively oriented circle |z - 5| = 2.

(d) $\int_{C_4} f(z) dz$ where C_4 is the positively oriented circle |z| = 8. (Hint: how does this integral relate to those over C_2 and C_3 ?).