MA 412 SAMPLE FINAL

(20 points) Question 1 Consider the function

$$
f(z)=y^{2}+i\left(3 x^{2}\right)
$$

(1) Find the values of $z=x+i y$ at which $f(z)$ is differentiable.
(2) State what it means for a general function $f(z)$ to be analytic at a point z_{0}.
(3) Where is the specific function $f(z)$, given above, analytic? Be sure you write down the Theorems you use to justify your answer.
(15 points) Question 2 Consider the mapping $f(z)=\exp (z)$. Find a region R such that f maps R onto the annulus $2 \leq|z| \leq 3$ in a one-to-one manner.
(20 points) Question 3 Using Σ notation, write down the Taylor series of the following functions at the points specified. In each case indicate the largest disk in which the expansion is valid.
(1)

$$
f(z)=\frac{1}{(i+z)^{2}}
$$

at $z_{0}=0$.
(2)

$$
\text { at } z_{0}=0 . \quad \log (1+z)
$$

(10 points) Question 4 Using Σ notation, write down the Laurent series expansion of

$$
f(z)=z^{3} \sin (1 / z)
$$

at $z_{0}=0$. Is this singular point a pole or an essential singularity?
(20 points) Question 5 Evaluate the following residues at the points specified
(1)

$$
\operatorname{Res}_{z=0} \frac{\exp (z)}{z^{4}}
$$

(2)

$$
\begin{gathered}
\operatorname{Res}_{z=0} z^{3} \cos (1 / z) \\
1
\end{gathered}
$$

(15 points) Question 6 Evaluate the integral

$$
\int_{C} \frac{d z}{z}
$$

where C is the parabola $y=2(x-1)^{2}$ joining $(1,0)$ to $(2,2)$.
(20 points) Question 7 Evaluate the integral

$$
\int_{C} \frac{d z}{\left(z^{2}-9\right)\left(z^{2}+16\right)}
$$

where:
(1) C is the circle $|z|=1$ positively oriented.
(2) C is the circle $|z-3 i|=2$ positively oriented.
(20 points) Question 8 Evaluate the following improper integral using the residue theorem. Please show all of your work.

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{4}+1\right)}
$$

(20) points Question 9 Find a formula for

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}
$$

where $a>0$ is a real number, and $n \geq 1$ is a positive integer.

