Answer the questions in the spaces provided on the question sheets. **You must show your work to get credit for your answers. There will be eight problems on the actual final exam.**
1. (15 points) Use the method of elimination to find the complete solution of $Ax = b$, being sure to state the particular solution and the specific vector(s) in the null space, where $A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ 6 \\ -6 \end{bmatrix}$.
2. (a) (12 points) Use the method of elimination to compute A^{-1} where
\[
A = \begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{bmatrix}.
\]
(b) (3 points) Calculate the determinant of the following matrix B and state why B is not invertible.
\[
B = \begin{bmatrix}
3 & 0 & -3 \\
-2 & 0 & 4 \\
4 & 0 & 7
\end{bmatrix}.
\]
3. (15 points) In this problem, you are to consider the matrix $A = \begin{bmatrix} 3 & 4 & 2 & 6 \\ -3 & -6 & -4 & -2 \\ 3 & 8 & 9 & 1 \end{bmatrix}$. Find the rank $r(A)$, the column space $\text{Col}(A)$, and the null space $\text{Nul}(A)$.
4. (10 points) Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} \). Determine the maximum number of linearly independent vectors.
5. (15 points) In this problem, you are to consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$. Find the following spaces: $\text{Col}(A), \text{Nul}(A)$.
6. (12 points)

\[A = \begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix}. \]

(a) (3 points) Find all of the eigenvalues of \(A \).

(b) (3 points) For each of the eigenvalues, find an associated eigenvector.

(c) (3 points) Sketch both eigenvectors.

(d) (3 points) Diagonalize \(A \), being sure to identify the eigenvector matrix \(P \) and the eigenvalue matrix \(D \).
7. (10 points) Determine whether or not \(b = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix} \) is a linear combination of the vectors \(v_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \), \(v_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \), and \(v_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix} \). Also, if \(b \) is a linear combination of these vectors, find that linear combination.
8. In this problem, you are to consider the matrices \(A_1 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \) and \(A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \).

(a) (2 points) Find and sketch the images of \(e_1 \) and \(e_2 \) under the mapping by the matrix \(A_1 \).

(b) (2 points) Describe in words how the matrix \(A_1 \) acts on general vectors \(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \); recall the words used in Tables 1-4 in Section 1.9.

(c) (2 points) Find and sketch the images of \(e_1 \) and \(e_2 \) under the mapping by the matrix \(A_2 \).

(d) (2 points) Describe in words how the matrix \(A_2 \) acts on general vectors \(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \);

(e) (2 points) Write down the matrix that represents reflection across the line \(x_2 = -x_1 \).
9. Compute A^{-1} where

(a) (3 points) $A = \begin{bmatrix} 3 & -9 \\ 2 & 6 \end{bmatrix}$, using any method you prefer.

(b) (7 points) $A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$, using row reduction.
10. Let $v_1 = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$, $v_2 = \begin{bmatrix} 6 \\ 2 \\ -1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, $v_4 = \begin{bmatrix} -4 \\ -8 \\ 9 \end{bmatrix}$.

(a) (8 points) Find the maximum number of linearly independent vectors in $H = \text{span}\{v_1, v_2, v_3, v_4\}$.

(b) (2 points) Let A be the matrix whose columns are given by the vectors v_1, v_2, v_3, v_4. Find $\text{rank}(A)$.
11. (10 points) Given \(A = \begin{bmatrix} 0 & 1 & -2 & 2 & 0 \\ -1 & 3 & 0 & 1 & 6 \\ -8 & -1 & 3 & 5 & 1 \end{bmatrix} \). Determine both \(\text{Col} (A) \) and \(\text{Nul} (A) \).
12. (10 points) Given $A = \begin{bmatrix} 6 & 1 & 0 & -1 \\ 2 & 2 & 0 & 1 \\ 0 & 3 & 8 & 0 \\ 0 & 1 & 0 & 5 \end{bmatrix}$. Calculate $\det(A)$.

13. (10 points) Find all of the eigenvalues and their associated eigenvectors of the matrix

$$A = \begin{bmatrix} 4 & 1 \\ 3 & 6 \end{bmatrix}.$$
14. (10 points) Find all of the eigenvalues and their associated eigenvectors of the matrix

\[A = \begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix} . \]