Spring Semester

Differential Equations

[3 MARKS]

Assignment

DUE DATE: April 10 before 5pm.

SUBMIT TO: my mailbox (not my office).

General guidelines.

- Attach the Assignment Cover Sheet and this question sheet to the front of your assignment.
- Only properly written assignments will be considered, i.e., what you submit is a document (like an essay) and not a draft written on scrap sheets. Poorly written (or unreadable) work will not be marked.
- Do not submit multiple versions of an answer. This will be interpreted as a draft and will not be considered for marking.
- The **bonus** questions are optional, and are not essential to completing the assignment.
- All diagrams must be at least $\frac{1}{3}$ of a page in size.

Consider the following model for the interactions between the populations N and M,

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - \alpha NM,$$

$$\frac{dM}{dt} = sM\left(1 - \frac{M}{L}\right) - \beta NM,$$
(1)

where r, s, K, L, α , and β are all positive parameters.

- (i) Is the interaction predator-prey, competitive, or mutualistic? Explain your reasoning. [2 MARKS]
- (ii) Briefly explain what each parameter represents.
- (iii) Non-dimensionalize system (1) so that the dimensionless dynamics are given by

$$\frac{dx}{d\tau} = x(1-x) - \mu_1 xy,$$
$$\frac{dy}{d\tau} = \sigma y(1-y) - \mu_2 xy.$$

What are the expressions for μ_1, μ_2 , and σ in terms of the original parameters? [2 MARKS] [3 MARKS]

(iv) Determine the coordinates of all four equilibria.

Let $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) denote the equilibria in which at least one of the coordinates is zero and let (x_4, y_4) be the equilibrium in which $x_4 \neq 0$ and $y_4 \neq 0$. This assignment is primarily concerned with how the model behaves under changes in the interaction rates, i.e., changes in μ_1 and μ_2 .

(v) State the conditions on μ_1 and μ_2 such that (x_4, y_4) is in the biologically relevant domain. [2 MARKS] (vi) Use linear stability analysis to classify $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) . [5 MARKS]

For parts (vii) – (ix) below, suppose that $\mu_1 < 1$ and $\mu_2 < \sigma$.		
(vii) Prove that (x_4, y_4) is a stable node.	[3 MARKS]	
(viii) Determine the vector field along the x- and y-nullclines.	[2 MARKS]	
(ix) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$.	[7 MARKS]	
For part (x) below, suppose that $\mu_1 > 1$ and $\mu_2 < \sigma$. (x) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$.	[3 MARKS]	
For part (xi) below, suppose that $\mu_1 < 1$ and $\mu_2 > \sigma$.		
(xi) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$.	[3 MARKS]	
For parts (xii) – (xiii) below, suppose that $\mu_1 > 1$ and $\mu_2 > \sigma$.		
(xii) Prove that (x_4, y_4) is a saddle.	[2 MARKS]	
(xiii) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$. [

Finally, it is important to be able to explain what you have calculated. The explanation is as important as the calculation itself, since it indicates your understanding of your analysis.

- (xiii) Interpret the phase planes from parts (ix) (xiii) with respect to the original variables and parameters. At minimum, you should address the following points:
 - Under what conditions do N and M stably coexist?
 - When N and M do not stably coexist, what is the long-term behaviour of the system?
 - Explain, in terms of the original parameters, why these different behaviours are observed.

[5 MARKS]

The remainder of the assignment is **bonus** material.

(xiv)	Fix $\mu_2 < \sigma$	Explain what happens as μ	1 increases through 1.	[1 MARK]
(211)	$1 \ln \mu_2 < 0$	Explain what happens as μ	1 mereuses unough 1.	

- (xv) Fix $\mu_1 < 1$. Explain what happens as μ_2 increases through σ . [1 MARK]
- (xvi) Sketch the *two-parameter plane* (i.e., plot μ_1 against μ_2) and show all bifurcation boundaries in the (μ_1, μ_2) plane. Give explicit formulae for the bifurcation boundaries. For this part, you may assume that $\sigma > 1$. You are not required to identify the types of bifurcations. [3 MARKS]