Spring Semester

Differential Equations

2017

Assignment Solutions

Consider the following model for the interactions between the populations N and M,

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - \alpha NM,$$

$$\frac{dM}{dt} = sM\left(1 - \frac{M}{L}\right) - \beta NM,$$
(1)

where r, s, K, L, α , and β are all positive parameters.

- (i) Is the interaction predator-prey, competitive, or mutualistic? Explain your reasoning. [2 MARKS] Competition: the interaction is detrimental to both N and M. That is, the interaction terms (i.e., the $-\alpha NM$ and $-\beta NM$ terms) decrease the growth rates of N and M.
- (ii) Briefly explain what each parameter represents.
 - r ... Logistic growth rate of N (in the absence of M)
 - $s \ldots$ Logistic growth rate of M (in the absence of N)
 - $K \ldots$ Carrying capacity of N (in the absence of competition)
 - L ... Carrying capacity of M (in the absence of competition)
 - α ... Rate of removal of N per unit of M
 - β ... Rate of removal of M per unit of N
- (iii) Non-dimensionalize system (1) so that the dimensionless dynamics are given by

$$\frac{dx}{d\tau} = x(1-x) - \mu_1 xy,$$

$$\frac{dy}{d\tau} = \sigma y(1-y) - \mu_2 xy.$$

What are the expressions for μ_1, μ_2 , and σ in terms of the original parameters? [2 MARKS] Choose the rescaling

$$N = Kx, \quad M = Ly, \quad t = \frac{1}{r}\tau.$$

The dimensionless parameters are given by

$$\mu_1 = \frac{\alpha L}{r}, \quad \mu_2 = \frac{\beta K}{r}, \quad \sigma = \frac{s}{r}.$$

(iv) Determine the coordinates of all four equilibria. There are four equilibria: $(x_1, y_1) = (0, 0), (x_2, y_2) = (0, 1), (x_3, y_3) = (1, 0)$, and

$$(x_4, y_4) = \left(\frac{\sigma(1-\mu_1)}{\sigma-\mu_1\mu_2}, \frac{\sigma-\mu_2}{\sigma-\mu_1\mu_2}\right).$$

Note that (x_4, y_4) is obtained as the solution of the algebraic system

$$1 - x_4 - \mu_1 y_4 = 0,$$

$$\sigma(1 - y_4) - \mu_2 x_4 = 0.$$
(2)

[3 MARKS]

[3 MARKS]

Let $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) denote the equilibria in which at least one of the coordinates is zero and let (x_4, y_4) be the equilibrium in which $x_4 \neq 0$ and $y_4 \neq 0$. This assignment is primarily concerned with how the model behaves under changes in the interaction rates, i.e., changes in μ_1 and μ_2 .

(v) State the conditions on μ_1 and μ_2 such that (x_4, y_4) is in the biologically relevant domain.[2 MARKS] The equilibrium (x_4, y_4) is only biologically relevant if $x_4 > 0$ and $y_4 > 0$. This implies

$$\mu_1 < 1$$
 and $\mu_2 < \sigma$,

or

$$\mu_1 > 1$$
 and $\mu_2 > \sigma$.

(vi) Use linear stability analysis to classify (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) . The Jacobian is

$$Df(x,y) = \begin{pmatrix} 1 - x - \mu_1 y - x & -\mu_1 x \\ -\mu_2 y & \sigma(1-y) - \mu_2 x - \sigma y \end{pmatrix}$$

Evaluating at each equilibrium and computing the associated eigenvalues, we find

- $(x_1, y_1) = (0, 0)$ is an UNSTABLE NODE (with eigendirections along the axes) for all μ_1 and μ_2 .
- $(x_2, y_2) = (0, 1)$ is all one half of the half of the half of the eigenvalue • $(x_2, y_2) = (0, 1)$ is a $\begin{cases} \text{SADDLE} & \text{for } \mu_1 < 1 \\ \text{STABLE NODE} & \text{for } \mu_1 > 1 \end{cases}$ • $(x_3, y_3) = (1, 0)$ is a $\begin{cases} \text{SADDLE} & \text{for } \mu_2 < \sigma \\ \text{STABLE NODE} & \text{for } \mu_2 > \sigma \end{cases}$

For parts (vii) – (ix) below, suppose that $\mu_1 < 1$ and $\mu_2 < \sigma$.

(vii) Prove that (x_4, y_4) is a stable node.

The linearization at (x_4, y_4) has the coefficient matrix

$$Df(x_4, y_4) = \begin{pmatrix} -x_4 & -\mu_1 x_4 \\ -\mu_2 y_4 & -\sigma y_4 \end{pmatrix},$$

where we have used (2) to simplify the Jacobian. So, we have

$$\operatorname{tr} Df(x_4, y_4) = -(x_4 + \sigma y_4) < 0,$$

$$\operatorname{det} Df(x_4, y_4) = (\sigma - \mu_1 \mu_2) x_4 y_4 > 0,$$

where the second inequality comes from the fact that x_4 and y_4 are both positive (since they are in the biologically meaningful domain), and $\sigma - \mu_1 \mu_2 > 0$. It remains to show that the quantity $(\operatorname{tr} Df(x_4, y_4))^2 - 4 \det Df(x_4, y_4)$ is positive. We find that

$$(\operatorname{tr} Df(x_4, y_4))^2 - 4 \det Df(x_4, y_4) = (x_4 + \sigma y_4)^2 - 4(\sigma - \mu_1 \mu_2) x_4 y_4,$$

= $(x_4 - \sigma y_4)^2 + 4\mu_1 \mu_2 x_4 y_4,$
> 0.

Hence, (x_4, y_4) is a STABLE NODE.

- (viii) Determine the vector field along the *x* and *y*-nullclines. [2 MARKS] See Figure 1.
- (ix) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$. [7 MARKS] See Figure 1.

[3 MARKS]

[5 MARKS]

Figure 1: Representative phase plane for $\mu_1 < 1$ and $\mu_2 < \sigma$.

For part (x) below, suppose that $\mu_1 > 1$ and $\mu_2 < \sigma$.

(x) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$.

[3 MARKS]

For part (xi) below, suppose that $\mu_1 < 1$ and $\mu_2 > \sigma$.

(xi) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$.

Figure 3: Representative phase plane for $\mu_1 < 1$ and $\mu_2 > \sigma$.

For parts (xii) – (xiii) below, suppose that $\mu_1 > 1$ and $\mu_2 > \sigma$.

(xii) Prove that (x_4, y_4) is a saddle.

The Jacobian evaluated at the non-trivial equilibrium is

$$Df(x_4, y_4) = \begin{pmatrix} -x_4 & -\mu_1 x_4 \\ -\mu_2 y_4 & -\sigma y_4 \end{pmatrix}$$

Note that we have again used (2) to simplify the Jacobian. So, the determinant is

$$\det Df(x_4, y_4) = (\sigma - \mu_1 \mu_2) x_4 y_4 < 0,$$

since x_4 and y_4 are both positive (they are in the biologically meaningful domain), and $\sigma - \mu_1 \mu_2 < 0$, which follows from the fact that $\mu_1 > 1$ and $\mu_2 > \sigma$. Hence, (x_4, y_4) is a SADDLE.

(xiii) Carefully sketch the phase plane in the first quadrant $\{x \ge 0, y \ge 0\}$. [3 MARKS] See Figure 4.

[2 MARKS]

Figure 4: Representative phase plane for $\mu_1 > 1$ and $\mu_2 > \sigma$.

Finally, it is important to be able to explain what you have calculated. The explanation is as important as the calculation itself, since it indicates your understanding of your analysis.

- (xiii) Interpret the phase planes from parts (ix) (xiii) with respect to the original variables and parameters. At minimum, you should address the following points:
 - Under what conditions do N and M stably coexist?
 - When N and M do not stably coexist, what is the long-term behaviour of the system?
 - Explain, in terms of the original parameters, why these different behaviours are observed.

Stable coexistence only occurs for $\mu_1 < 1$ and $\mu_2 < \sigma$. In terms of the original variables and parameters, stable coexistence of N and M can only occur if

[5 MARKS]

$$\alpha L < r$$
, and $\beta K < s$.

Note that αL is the maximal rate of predation of M on N and r is the intrinsic growth rate of N in the absence of M. Similarly, βK is the maximal rate of predation of N on M and s is the intrinsic growth rate of M in the absence of N. Thus, stable coexistence can only occur if

- the intrinsic growth rate of N exceeds the maximal predation rate due to competition with M, and
- the intrinsic growth rate of M exceeds the maximal predation rate due to competition with N.

In the case of stable coexistence, the system settles to a steady state where both N and M survive, but at levels below their respective carrying capacities (because of the competition).

For all other cases ($\alpha L > r$ and $\beta K < s$, $\alpha L < r$ and $\beta K > s$, and $\alpha L > r$ and $\beta K > s$), at least one of N or M becomes extinct because the predation due to competition overwhelms the intrinsic growth. In ecology, this is known as the *principle of competitive exclusion*. I leave it to you to check which cases correspond to extinction of N or M. The remainder of the assignment is **bonus** material.

- (xiv) Fix $\mu_2 < \sigma$. Explain what happens as μ_1 increases through 1. [1 MARK] Transcritical bifurcation of the equilibria (0, 1) and (x_4, y_4) .
- (xv) Fix $\mu_1 < 1$. Explain what happens as μ_2 increases through σ . [1 MARK] Transcritical bifurcation of the equilibria (1,0) and (x_4, y_4) .
- (xvi) Sketch the *two-parameter plane* (i.e., plot μ_1 against μ_2) and show all bifurcation boundaries in the (μ_1, μ_2) plane. Give explicit formulae for the bifurcation boundaries. For this part, you may assume that $\sigma > 1$. You are not required to identify the types of bifurcations. [3 MARKS] One set of bifurcation boundaries is found by solving the algebraic equation

$$\det Df(x_4, y_4) = 0,$$

corresponding to a zero eigenvalue of (x_4, y_4) (node to saddle transition or vice versa). The other set of bifurcation boundaries is obtained as the solution of the system

$$\operatorname{tr} Df(x_4, y_4) = 0,$$

 $\det Df(x_4, y_4) > 0,$

corresponding to the transition from stable focus to unstable focus (or vice versa).