
1

Applied Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: 10/08/09

Outline

• Perl and the Web

• Perl as a command line tool

• Text Processing

• Perl in statistics

1

2

2

Perl as a Command Line Tool.

Although the primary mechanism for using Perl is through scripts, Perl can be
used on the command line in conjunction with other programs using Unix pipes.

Ex: Take the output of 'ls -als' and print the file names and sizes only.
Typically, the output of ls -als looks like this.

4 -rw-rw---- 1 tkohl consrv 310 Sep 7 1999 dead.letter

The point being, that (if we number the columns from left to right, starting with 0)
then the two columns of interest are as shown.

4 -rw-rw---- 1 tkohl consrv 310 Sep 7 1999 dead.letter

column 5 column 9

The command sequence would be as follows:

>ls -als | perl -ane 'print "$F[5] $F[9]\n"'

3

4

3

How does this work?

>ls -als | perl -ane 'print "$F[5] $F[9]\n"'

-e execute the code in quotes
-n execute the code for every line of standard input

(i.e. assume a while(<STDIN>) loop has been wrapped around
the code to execute, with each line assigned to $_)

-a take the line of standard input and let
@F=split(/\s+/,$_)

The effect is that the output of

ls -als

is split into columns, and then we print out the columns of interest (5 and 9)

Perl's regular expression matching can be put to use on the command line.

Ex: Your Unix path is given by the environmental variable $PATH

>echo $PATH

.:/home/tkohl/bin:/usr/vendor/bin:/usr/local/4bin:
/usr/local/bin:/usr/ucb:/usr/bin:/usr/bin/X11

If you want a more readable list, you can do the following:

>echo $PATH | perl -ne 's/:/\n/g;print'

replace every occurrence of : with a
newline \n (note we are acting on
the variable $_)

take the path separated by :

print the result

5

6

4

.
/home/tkohl/bin
/usr/vendor/bin
/usr/local/4bin
/usr/local/bin
/usr/ucb
/usr/bin
/usr/bin/X11

The result then is

We can even shorten this by using the -p option which automatically prints
the variable $_

>echo $PATH | perl -pne 's/:/\n/g'

We can also do in-place modification of a file using Perl on the command line.

Ex: Say we wish to replace every occurrence of the word ’Foo' in the file
called somefile by the word ’Bar'

>perl -p -i.old -e 's/Foo/Bar/g' somefile

use the print option
to print the contents of $_

-i (in place operation)
and do the modifications to
a file called somefile.old
and then copy it back to the
original somefile

-e means execute this code
file to modify

substitution to apply
everywhere (g option)

7

8

5

Perl in Statistics

In this example, we will consider a basic problem in statistics.

For a list of N data points of the form

(x1,y1)
(x2,y2)
.
.
.
(xN,yN)

statisticians consider whether there is some functional relationship
between the x and y values.

The most basic possible relationship would be a linear one.

Ideally, we would like a linear function y=a*x+b such that for each
i=1..N, one has that

yi = a*xi + b

Now, real life data is seldom so neat, so, barring an exact
such relationship for all the data, one instead looks for the
line of best fit, also called the ‘regression line’ namely
the one which minimizes the ‘sum of square errors’ that is:

n

SSE = ∑ (yi – (a+b*xi))2

i=1

9

10

6

The basic problem is to find the ‘a’ and ‘b’ which
minimize this error. In many statistics books you can find the
details for deriving these, but in summary, the formulæ for
‘a’ and ‘b’ are given as follows:

N*(Σ xi*yi) – (Σ xi)(Σ yi)
a =

N*(Σ xi
2) – (Σ xi)2

Σyi - a (Σ xi)
b =

N

Recall that N is the number of data points.

For our example, we will assume that there is a file called data.dat
with the following entries (where the first column is xi and the second yi) :

1 5.5
3 7.0
4 9.1
7 6.2
11 8.8
15 9.4

Our script will do several things, read in this data set , compute the least squares
line according to the formulæ on the previous slide, then we will take the data from
the file as well as the formula for the line and plot both using the GNUPLOT
program which is available on most Unix systems.

11

12

7

Here is the script:

#!/usr/bin/perl
open(DATA,"data.dat");
while($line=<DATA>){

($x,$y)=split(/\s+/,$line);
push(@X,$x);
push(@Y,$y);

}
close(DATA);

($a,$b)=regression(\@X,\@Y);
print "${a}x+$b\n";

We read in the file and store the respective x’s and y’s in two
arrays @X and @Y and then we compute the regression line
by passing references to @X and @Y to a subroutine called
regression() which computes a and b.

open(GNUPLOT,"|gnuplot -persist");
print GNUPLOT "set origin 0,0;\n";
print GNUPLOT "set yzeroaxis;\n";
print GNUPLOT "set xzeroaxis;\n";
print GNUPLOT "set xrange [0:10];\n";
print GNUPLOT "set yrange [0:10];\n";
print GNUPLOT "set xlabel \"x\";\n";
print GNUPLOT "set ylabel \"y\";\n";
print GNUPLOT "L(x)=$b*x+$a;\n";
print GNUPLOT "plot \"data.dat\",L(x)
;\n";
close(GNUPLOT);

Here we invoke the GNUPLOT program as a process with
the –persist option present to keep the window open after
the plot has been made.

The print lines basically create a GNUPLOT script, the syntax of
which can be referenced in the GNUPLOT manual and online.

13

14

8

sub regression{
my @X=@{$_[0]};
my @Y=@{$_[1]};
my $N=@X;
my $i;
my ($SXY,$SX,$SY,$SX2)=(0,0,0,0);
my $a,$b;
for($i=0;$i<$N;$i++){

$SX+=$X[$i];
$SX2+=$X[$i]**2;
$SY+=$Y[$i];
$SXY+=$X[$i]*$Y[$i];

}
$b=($N*($SXY)-($SX)*($SY))/($N*$SX2-$SX**2);
$a=($SY-$a*($SX))/$N;
return($a,$b);

}

This computes the a and b of the regression line.

In particular, note that the two parameters are references to the
arrays of x and y data which must be dereferenced in order
to access them separately within the sub.

Observe now the output on the screen that GNUPLOT pops up.
The data points and regression line are graphed simultaneously.

15

16

9

Note, if you want a hard copy of this, say a pdf file, one can modify
the script as follows:

print GNUPLOT "set terminal postscript enhanced color;\n";
print GNUPLOT "set output \"plot.ps\";\n";
print GNUPLOT "set origin 0,0;\n";
print GNUPLOT "set yzeroaxis;\n";
print GNUPLOT "set xzeroaxis;\n";
print GNUPLOT "set xrange [0:10];\n";
print GNUPLOT "set yrange [0:10];\n";
print GNUPLOT "set xlabel \"x\";\n";
print GNUPLOT "set ylabel \"y\";\n";
print GNUPLOT "L(x)=$a*x+$b;\n";
print GNUPLOT "plot \"data.dat\",L(x) ;\n";
close(GNUPLOT);
`ps2pdf plot.ps`;

The first two lines modify the output so that it goes to a postscript file
called plot.ps and the ps2pdf command converts plot.ps to pdf format.

Now there are many mathematical and statistical applications that
can be handled in Perl as well as many mathematical modules that one
can download from CPAN.

Also, there are modules such as GD for graphics applications.

We used GNUPLOT here as it is a generic package that is available
on most Unix systems and can be installed in Windows too.

17

18

10

Perl and the Web

Perl is used in many ways for web applications, including the management
of web servers as well as CGI scripting and more.

Our first example will involve the analysis of web server logs.

In particular we will show how to parse the log files and retrieve the
important statistical information contained therein, such as the addresses
of those sites connecting to the server as well as content downloaded etc.

This is not strictly speaking a web-centric demonstration, since it will
be more about crafting regular expressions to analyze text data, nonetheless
it’s as good an example of this as any other so...

The basic information that is recorded in any web 'event' which a server
might record are:

• the address of the incoming connection (i.e. who visited)
• the time of the connection
• what content they downloaded

Additionally, one may record other data such as:

• any site they came to yours by via a link
• the hardware/software combination they use
(e.g. Unix, Windows, Netscape, IE)

19

20

11

Ex: A typical entry in an access_log file:

168.122.230.172 - - [16/Feb/2001:08:42:52 -0500] "GET /people/tkohl/teaching/sprin
g2001/secant.pdf HTTP/1.1" 200 0 "http://math.bu.edu/people/tkohl/teaching/spri
ng2001/MA121.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

168.122.230.172

[16/Feb/2001:08:42:52 -0500]

"GET /people/tkohl/teaching/spring2001/secant.pdf HTTP/1.1"

200 0

"http://math.bu.edu/people/tkohl/teaching/spring2001/MA121.html"

"Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

IP address of visitor

time

content they retrieved

server response code

referrer

client software and archictecutre

168.122.230.172 - - [16/Feb/2001:08:42:52 -0500] "GET /people/tkohl/teaching/sprin
g2001/secant.pdf HTTP/1.1" 200 0 "http://math.bu.edu/people/tkohl/teaching/spri
ng2001/MA121.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

In order to parse this file and extract the relevant information, say for some statistical
analysis or whatever, we need to describe log entries with a regular expression
and extract the different components.

sub parse_log{
my $entry = $_[0];
$entry =~ /([\d\.]+) \- \- (\[[^\]]+\]) \"([^\"]+)\" (\d+ \d+)

\"([^\"]+)\" \"([^\"]+)\"/;
return ($1,$2,$3,$4,$5,$6);

}

Let's examine the pattern to clarify what's going on.

Here is a subroutine for parsing entries such as the one above.

21

22

12

168.122.230.172 - - [16/Feb/2001:08:42:52 -0500] "GET /people/tkohl/teaching/sprin
g2001/secant.pdf HTTP/1.1" 200 0 "http://math.bu.edu/people/tkohl/teaching/spri
ng2001/MA121.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

Discounting the spaces and dashes between the entries, here are the patterns describing
the portions to memorize.

([\d\.]+) ip address

(\[[^\]]+\]) date (including the brackets

\"([^\"]+)\" content downloaded

(\d+ \d+) status code

\"([^\"]+)\" referrer

\"([^\"]+)\"/ client info

(\[[^\]]+\])

a real [

the class of things other than]
(one or more occurrences)

a real]

([\d\.]+)

one or more occurrences of the class of digits or periods .

IP address

date

23

24

13

\"([^\"]+)\" content downloaded
referrer
client information

look for literal "

class of things other than literal "
one or more occurrences

(\d+ \d+)

two numbers with a space in-between

status code

So now, the components of the log entry are returned as an array
from the parse_log function.

So we might use it in a larger script as follows:

open(LOG,"/usr/local/apache/logs/access_log");
while($line=<LOG>){

($ip,$date,$content,$status,$referrer,$client)=parse_log($line);
do something with the components

}
close(LOG);

25

26

14

simple web clients

Say one wishes to, without using a browser, download some data
from a website.

Ex:
#!/usr/bin/perl
use LWP::Simple;
print get($ARGV[0]);

call this ‘geturl’

>geturl http://www.bu.edu

The output will be the literal HTML code of the BU homepage,
which may not be terribly interesting, but there are other ways
of using such data.

Let’s consider a more interesting example.
If we wish to find the academic calendar for the 2004/5 academic year,
it is located at http://www.bu.edu/reg/cal0405.htm

27

28

15

Now suppose we wish to extract the information from this page.
The raw output of our script includes a lot of HTML code which
certainly isn’t essential information.

However, we can extract the information we want by observing
that the relevant information we want lies within tags such as these

<TD>Instruction Begins </TD>

So we can modify our script, to, in fact, retrieve this URL and
then do some custom filtering of the data.

what we’re after

#!/usr/bin/perl
use LWP::Simple;
$URL="http://www.bu.edu/reg/cal0405.htm";
@DATA=split(/\n/,get($URL));
foreach (@DATA){

if(/\<TD\>\(.*)\<\/font\>/){
$item=$1;
print "$item\n";

}
}

which, when run yields

Instruction Begins
Wednesday, May 19, 2004
Holiday, Classes Suspended
Monday, May 31, 2004
Instruction Ends
Wednesday, June 30, 2004
Instruction Begins
Tuesday, July 6, 2004
Instruction Ends
Friday, August 13, 2004
.
. etc

Let’s add a line between each logical
entry.

what we want

29

30

16

#!/usr/bin/perl
use LWP::Simple;
$URL="http://www.bu.edu/reg/cal0405.htm";
@DATA=split(/\n/,get($URL));
foreach (@DATA){

if(/\<TD\>\(.*)\<\/font\>/){
$item=$1;
print "$item\n";
($item=~/200(4|5)/) && (print ”\n”);

}
}

And now the output looks a bit neater:

Instruction Begins
Wednesday, May 19, 2004

Holiday, Classes Suspended
Monday, May 31, 2004

Instruction Ends
Wednesday, June 30, 2004

.. Etc.

issue a newline if the item
ends in 2004 or 2005

Of course, we could look closer at the original web page and observe that
there is a link to a PDF version of the calendar!

Perhaps we could
grab just this file
and put it in our
home directory.

31

32

17

Indeed, we can!
We note that this link point to the file/URL

http://www.bu.edu/reg/images/cal0405.pdf

So….

geturl http://www.bu.edu/reg/images/cal0405.pdf > cal0405.pdf

where the ‘>’ indicates we should output the result to a file in our home directory
also called cal0405.pdf

We can then view this page at our convenience as follows:

acroread cal0405.pdf

The point in both cases is that these tools can give one the power
to extract data (potentially very volatile data) from a remote site
and use it in our own scripts, perhaps with a bit of filtering on our
part, but this is easy when using Perl!

33

34

18

Text Processing

#!/usr/bin/perl
use LWP::Simple;
$URL="ftp://nic.funet.fi/pub/doc/literary/etext/flatland.txt.gz";
open(F,">./flatland.txt.gz");
print F get($URL);
close(F);
(!(-e "./flatland.txt")) && system("gunzip ./flatland.txt.gz");

We use the LWP module to retrieve the compressed text of the book Flatland
which we download to the current directory and then uncompress using the
‘gunzip’ command for uncompressing .gz files.

On a Windows system, you can just download the file and uncompress it
manually.

In this example, we will analyze the text in a small book and create
an index of the words in the book and how often they occur.

The first part will be to actually obtain a small text to analyze.

Next comes the actual reading and indexing of the words in the text.

open(F,"./flatland.txt");
while($line=<F>){

$line=~s/[\)\(,_\.\"\';:\?\-*\d]/ /g;
@W=split(/\s+/,$line);
foreach $w (@W){

$w=lc($w);
(length($w)>1) && ($INDEX{$w}++);

}
}
close(F);

open the file for reading

filter out any punctuation
and non word characters
and replace every occurrence
of them with spaces

split the resulting line
along spaces, leaving an array
of the words in that line

make each word lower case

if the word is longer than
one letter add it to the %INDEX
associative array, whose keys
will be the words and whose
values will be the count of the
particular wordclose the file

35

36

19

Now, we need to organize this information to see what are the most
common words in the text. In particular, we wish to sort the list according
to the size of the word counts.

First, we should demonstrate how one sorts an array of numbers by
their numerical value.

Recall that there is a built in sort() function but that this sorts
based on the dictionary ordering of the array elements which can
lead to unexpected results

Ex:

@X=(222,1,10,11,10);
@X=sort(@X);
print “@X”;

yields

1 10 101 11 222

To sort by numerical ordering, we use the following technique, which
basically manipulates the criterion used to compare elements of the array.

@X=(222,1,10,11,10);
@X=sort bynum (@X);
print “@X”;

sub bynum{
$a <=> $b;

}

yields

1 10 11 101 222

bynum is a subroutine which
controls the comparison criterion
for sort

$a and $b are two elements being compared
and <=> (the spaceship operator!)
basically returns -1, 0, or 1 depending on
the value of $a-$b

Now, this technique can be extended to sort the keys of the %INDEX
hash to order it based on the size of the word counts.

37

38

20

@WORDS=sort(bycount (keys(%INDEX)));
@WORDS=reverse(@WORDS);

for($i=0;$i<=19;$i++){
print "$WORDS[$i] -> $INDEX{$WORDS[$i]}\n";

}

sub bycount{
$INDEX{$a} <=> $INDEX{$b};

}

here we sort the keys (words) in %INDEX according to the value associated
to each word, namely the count

then we reverse the array since we wish to see the top 20 words

Lastly, the for loop simply prints out the ‘Top 20’ words by their count
in the text.

the -> 2083
of -> 1482
and -> 1022
to -> 1008
in -> 639
that -> 477
is -> 396
you -> 348
my -> 319
it -> 312
as -> 311
by -> 300
not -> 296
but -> 271
for -> 237
be -> 232
with -> 225
or -> 219
at -> 185
his -> 181

These results aren’t terribly surprising, but
this program can be easily modified to
do many other similar analyses.

The possibilities are endless.

39

40

21

References for further information on Perl

• Learning Perl by Randal L. Schwartz & Tom Christiansen (O'Reilly)

• Algorithms with Perl by J. Orwant, J. Hietaniemi, J. Macdonald (O'Reilly)

• Programming Perl by Larry Wall, Tom Christiansen and Jon Orwant (O' Reilly)

• Perl Cookbook Tom Christiansen and Nathan Torkington (O’ Reilly)

• Web Client Programming in Perl by Clinton Wong (O' Reilly)

• Perl for System Administration by David N. Blank-Edelman (O' Reilly)

Books

Web http://www.perl.com

http://www.perlmonks.org

http://www.cpan.org

http://math.bu.edu/people/tkohl/perl My Perl Page!

Applied Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

c 2015 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Information Services & Technology
111 Cummington Mall
Boston, Massachusetts 02215

41

42

