
1

Applied Perl

Boston University
Office of Information Technology

Course Number: 4095

Course Coordinator: Timothy Kohl

Last Modified: 08/31/07

Outline

• Perl in system administration

• Perl and the Web

• Perl as a command line tool

• Perl and SQL (MySQL)

• GUI's in Perl (Perl-Tk)

2

Perl as a command line tool.

Although the primary mechanism for using Perl is through scripts, Perl can be
used on the command line in conjunction with other programs using Unix pipes.

Ex: Take the output of 'ls -als' and print the file names and sizes only.
 Typically, the output of ls -als looks like this.

 4 -rw-rw---- 1 tkohl consrv 310 Sep 7 1999 dead.letter

The point being, that (if we number the columns from left to right, starting with 0)
then the two columns of interest are as shown.

 4 -rw-rw---- 1 tkohl consrv 310 Sep 7 1999 dead.letter

column 5 column 9

The command sequence would be as follows:

>ls -als | perl -ane 'print "$F[5] $F[9]\n"'

3

How does this work?

>ls -als | perl -ane 'print "$F[5] $F[9]\n"'

-e execute the code in quotes
-n execute the code for every line of standard input
 (i.e. assume a while(<STDIN>) loop has been wrapped around
 the code to execute, with each line assigned to $_)
-a take the line of standard input and let
 @F=split(/\s+/,$_)

The effect is that the output of

ls -als

is split into columns, and then we print out the columns of interest (5 and 9)

Perl's regular expression matching can be put to use on the command line.

Ex: Your Unix path is given by the environmental variable $PATH

>echo $PATH

.:/home/tkohl/bin:/usr/vendor/bin:/usr/local/4bin:
/usr/local/bin:/usr/ucb:/usr/bin:/usr/bin/X11

If you want a more readable list, you can do the following:

>echo $PATH | perl -ne 's/:/\n/g;print'

replace every occurrence of : with a
newline \n (note we are acting on
the variable $_)

take the path separated by :

print the result

4

.
/home/tkohl/bin
/usr/vendor/bin
/usr/local/4bin
/usr/local/bin
/usr/ucb
/usr/bin
/usr/bin/X11

The result then is

We can even shorten this by using the -p option which automatically prints
the variable $_

>echo $PATH | perl -pne 's/:/\n/g'

We can also do in-place modification of a file using Perl on the command line.

Ex: Say we wish to replace every occurrence of the word ’Foo' in the file
called somefile by the word ’Bar'

>perl -p -i.old -e 's/Foo/Bar/g' somefile

use the print option
to print the contents of $_

-i (in place operation)
and do the modifications to
a file called somefile.old
and then copy it back to the
original somefile

-e means execute this code
file to modify

substitution to apply
everywhere (g option)

5

Perl as a system administrator's tool.

In this section we examine Perl's role in system administration.

As many of the files that control the behavior of a Unix system are text
files, and since Perl excels at text file processing it is a natural choice
for system administrators.

There is also the fact that it takes less time to assemble a Perl script to
do a certain task than, say, a corresponding C program to do the same thing.

Problem: To lock the accounts of users who have not logged in within the
 last 6 months.

Tactic: Check the age (access time) of the .login file in each users home
directory.

First, how do we get a list of all the 'ordinary' users on the system.
Usually, there are two files of importance,

/etc/passwd contains user information

and

/etc/shadow contains encrypted passwords (not needed)

6

The structure of /etc/passwd looks like this.

username:x:uid:gid:gcos:homedir:shell

login name

password shadowing

uid - unique number identifying user

gid - group id number (e.g. staff, faculty, etc.)

data about user, e.g. full name

user home directory (e.g. /home/username)

users shell (e.g. /bin/tcsh)

Ex:

fred:x:3216:25000:Fred Flintstone:/home/fred:/bin/bash

 3216 is fred's uid and 25000 is his gid.

As such, there may be others with the same gid (i.e. belong to the same group)
but only one with that uid.

Since we are interested in looking at the accounts of ordinary users which
have only certain types of uids and gids we can, for example, restrict
our attention to those in the password file with certain gids

25000 - students
25001 - faculty
25002 - staff

Ex:

7

For users with one of these gid's we will check to see if they logged in
sometime the last 6 months and, if not, lock their account.

So we need to parse the /etc/passwd file and grab the entries with
those gid's of interest.

#!/usr/local/bin/perl5
@GID=("25000","25001","25002");
open(P,"/etc/passwd");
while($line=<P>){

chomp($line);
@fields=split(/:/,$line);
foreach $gid (@GID){

if ($fields[3] ==$gid){
print "$line\n";

}
}

}
close(P);

Ex: Let's first look at the password file and print out those lines with
 one of the gid's we're looking for.

username:x:uid:gid:gcos:homedir:shell

open password file

split up each line along :
and assign to array @fields

loop over @GID and check

gid's of interest

close password file

8

Ok, now what?

Contained in each line is the home directory of the given user,
say /home/username

As such, their .login file is

/home/username/.login

To check the access time, of this file, we can use the -A file test
operator which returns the number of days since the given file (or directory)
was accessed.

So we will use a conditional of the form:

if(-A "/home/username/.login" >180){
lock their account

}

So, here is how the final script might go.
#!/usr/local/bin/perl5
@GID=("25000","25001","25002");
$noshell="/bin/nosh"; # void shell prevents login
system("cp /etc/passwd /etc/passwd.save"); # safety first!
open(P,"/etc/passwd");
open(NP,">/etc/newpasswd");
while($line=<P>){

chomp($line);
@fields=split(/:/,$line);
foreach $gid (@GID){

if ($fields[3] ==$gid){
$homedir=$fields[5];
if(-A "$homedir/.login" > 180){

$line=~s/$fields[6]/$noshell/;
}

}
}
print NP "$line\n";

}
close(P);
close(NP);
system("rm /etc/passwd;mv /etc/newpasswd /etc/passwd");

9

Let's break this down.

#!/usr/local/bin/perl5
@GID=("25000","25001","25002");
$noshell="/bin/nosh";
system("cp /etc/passwd /etc/passwd.save");
open(P,"/etc/passwd");
open(NP,">/etc/newpasswd");

set up gid array

setting a user's shell to
/bin/nosh makes logins
impossible

make a backup of /etc/passwd

this is the modified version
of /etc/passwd

while($line=<P>){
chomp($line);
@fields=split(/:/,$line);

Read in /etc/passwd one line at time and split the fields up along :

foreach $gid (@GID){
if ($fields[3] ==$gid){

$homedir=$fields[5];
if(-A "$homedir/.login" > 180){
 $line=~s/$fields[6]/$noshell/;
}

}
 }
 print NP "$line\n";

check each
line for one of
the gid's we want

pick out home dir.

check if
.login has not
been accessed
for over 180 days

if so, then replace shell
($fields[6]) with "/bin/nosh"

regardless of whether we modified the
user's shell, write the line to the file /etc/newpassd

10

}
close(P);
close(NP);
system("rm /etc/passwd;mv /etc/newpasswd /etc/passwd");

Once done, close both /etc/passwd, and /etc/newpasswd

Then remove the old /etc/passwd and replace it with the modified version.

Note, we made a backup of /etc/passwd beforehand in case something went
wrong while this script was running.

fred:x:3216:25000:Fred Flintstone:/home/fred:/bin/bash

fred:x:3216:25000:Fred Flintstone:/home/fred:/bin/nosh

To clarify, if /home/fred/.login has not been accessed for more than 6 months
then this what happens to his entry in /etc/passwd

becomes
$fields[5] $fields[6]

11

Perl and SQL (MySQL)

A SQL database is a database that can be interacted with via a command
syntax known as Structured Query Language.

Essentially, one asks questions of the database, questions phrased in such a
way as to return very precise information from the tables in the database.

The database itself consists of fields with certain labels where each entry has
specified values for these fields.

Ex: Suppose you have a database of books called Books where the fields are say

TITLE
AUTHOR
DATE
PAGES

then you could do the following

>use Books;
>select TITLE from Booklist;

Hamlet
The Gold Bug
The Stranger
.
.

300 rows in set (0.01 sec)

>

Here we're assuming that the
database is called 'Books' and
the table containing the fields is
called 'Booklist'

So here we are asking for
the TITLE fields for all the entries
in the table Booklist.

diagnostic message from the database server

12

One could also query multiple fields

>use Books;
>select TITLE,AUTHOR from Booklist;

Hamlet William Shakespeare
The Gold Bug Edgar Allan Poe
The Stranger Albert Camus
.
.
.

300 rows in set (0.01 sec)

>

The real power of SQL is in the ability to make more complicated queries.

>use Books;
>select TITLE,AUTHOR from Booklist where AUTHOR like 'Albert Camus';

The Plague Albert Camus
The Stranger Albert Camus
.
.
.

19 rows in set (0.01 sec)

> i.e. Return the TITLE and AUTHOR fields
where AUTHOR=Albert Camus

13

There are quite a number of implementations of SQL databases, the one I
will be using for my examples is MySQL.

Regardless of which implementation, the real point in all this is that there
is a Perl module called DBI which one can use to transact with SQL databases
of varying types from within a Perl script without the need to resort to some
system() or `command` mechanism.

I will give a tiny example, re-using the Book database.

#!/usr/local/bin/perl5
use DBI;
$db=DBI->connect('DBI:mysql:Books:localhost','me',undef);
$query="select TITLE,AUTHOR from Booklist";
$table_data=$db->prepare($query);
$table_data->execute;
$table_data->bind_columns(undef,\($Title,$Author));
while($table_data->fetch){
 print "[$Title $Author]\n";
}

use DBI; We will be using the DBI.pm module

$db=DBI->connect('DBI:mysql:Books:localhost','me‘,undef);

We create a DBI object ($db) by connecting (as user 'me') to an existing
MySQL server running on localhost (i.e. the machine we're logged into)
and indicate that we wish to access the Books database

14

$query="select TITLE,AUTHOR from Booklist";
$table_data=$db->prepare($query);
$table_data->execute;

$query is the query we wish to pass to the database we're now connected to,
and $table_data will be where we get the result returned by the server
once the query is executed

$table_data->bind_columns(undef,\($Title,$Author));
while($table_data->fetch){
 print "[$Title $Author]\n";
}

Here we bind the columns that will be returned from the query to two variables
$Title and $Author while there are results to be 'fetched' from the
database and printed.

Can you guess what kind of object \($Title,$Author) is ?

don't worry about this

Ex: [Hamlet William Shakespeare]
[The Gold Bug Edgar Allan Poe]
[The Stranger Albert Camus]
.
.

and so on.

15

Doing structured queries is just as easy.

#!/usr/local/bin/perl5
use DBI;
$db=DBI->connect('DBI:mysql:Books:localhost','me',undef);
$query="select TITLE,AUTHOR from Booklist where
 TITLE like \'The Stranger\'";
$table_data=$db->prepare($query);
$table_data->execute;
$table_data->bind_columns(undef,\($Title,$Author));
while($table_data->fetch){
 print "[$Title $Author]\n";
}

The only difference is the line

$query="select TITLE,AUTHOR from Booklist where TITLE like \‘The Stranger\'";

which is exactly like the command line SQL query seen earlier except we need
to escape the ' with \' when creating $query

This is just the tip of the iceberg. One can not only make queries
but also modify or create a database using DBI.

To read more about DBI, consult the references at the end of the tutorial.

16

GUI's in Perl (Perl-Tk)

There exists another scripting language (actually two) which came out around the
same time as Perl, known as Tcl (tool command language) and Tk (toolkit).

Tcl is still around today but it is the counterpart language Tk that attracted the
interest of many GUI (graphical user interface) developers.

The reason being that it allowed one to create all manner of GUI 'widgets' like
windows, sliders, buttons but in a scripting language.

In the Unix world, before this, one generally had to use specialized (and very
cryptic) C libraries to create applications with GUIs.

Something as simple, for example, as creating a window with a button that did
something when clicked, was a highly non-trivial task.

So what does this have to do with Perl?

Well, people liked Tk so much that they incorporated its (object oriented)
functionality into Perl by creating a module called Tk.pm

Now, the original syntax of Tk had a very hierarchical feel, in that it allowed
one to create window 'objects' in a top down fashion. Moreover, it allowed one
to have 'events' such as mouse clicks trigger functions in one's program.

These same features have carried over into the Perl implementation but the
syntax is now thoroughly Perl.

17

Ex: (extremely simple!)

#!/usr/local/bin/perl5
use Tk;
my $main = MainWindow->new();
$main->Label(text=>"Button Example")->pack;
$main->Button(text=>"Quit",command=>sub{exit})->pack;
MainLoop;

Clicking the button here will
make the program terminate
and the window go away.

use Tk; incorporate in the Tk.pm module

my $main = MainWindow->new(); create a window object using the
new() constructor in Tk.pm

$main->Label(text=>"Button Example")->pack;
$main->Button(text=>"Quit",command=>sub{exit})->pack;

Here we create two objects a Button and a Label which are contained
within $main, the window object we started with.

The Label is, in fact, another object which includes an associative array
of attributes, for instance the text indicated by

text=>"Button Example"

18

The Button object is also contained within $main and also has an associative
array of attributes.

Moreover, one of its attributes command, is associated to a function call
 (in this case an anonymous subroutine) that exits the program when the button
is clicked.

$main->Button(text=>"Quit",command=>sub{exit})->pack;

anonymous sub
corresponds to clicking
the button

The pack()command is what brings draws the object on the screen.

Actually what this does is to 'pack' the different components into the
window that was created with new()

The command MainLoop is what keeps the program running until
someone closes the open window, either by clicking the ‘Quit’ button
or closing the window manually.

This kind of functionality is called ‘Event Driven Programming ’ since
the program does not flow from top to bottom like a typical script but
sits and awaits input for an indeterminate amount of time.

19

As another example, we have a 'Listbox' object.

#!/usr/local/bin/perl5 -w
use Tk;
$main = MainWindow->new();
$list=$main->Listbox("width"=>20,"height"=>3)->pack();
$list->insert('end',"this","that","the other thing");
$list->bind('<Double-1>',\&print_choice);

sub print_choice{
my $choice=$list->get('active');
return if (!$choice);
print "$choice\n";
$list->delete('active');

}

MainLoop();

If we now double-click on the entry 'this' then the word 'this'
gets printed on screen and the entry is removed from the list
resulting in the following.

this

20

$list->insert('end',"this","that","the other thing");

$list->bind('<Double-1>',\&print_choice);

$main = MainWindow->new();
$list=$main->Listbox("width"=>20,"height"=>3)->pack();

Here we create a top level window object with new() and within that
we create a Listbox object with size parameters specified.

The insert() method acts on the $list object by inserting elements one
after each other in the listbox.

This 'binds' the action of double-clicking mouse button 1 to the function
print_choice()

sub print_choice{
my $choice=$list->get('active');
return if (!$choice);
print "$choice\n";
$list->delete('active');

}

The print_choice() function takes the active entry (that which was
double-clicked on) and returns the string at that position and into the
variable $choice which then gets printed and is subsequently deleted
from the listbox object $list

To read more about this, consult the references at the end of the tutorial.

21

Perl and the Web

Perl is used in many ways for web applications, including the management
of web servers as well as CGI scripting and more.

Our first example will involve the analysis of web server logs.

In particular we will show how to parse the log files and retrieve the
important statistical information contained therein, such as the addresses
of those sites connecting to the server as well as content downloaded etc.

The basic information that is recorded in any web 'event' which a server
might record are:

• the address of the incoming connection (i.e. who visited)
• the time of the connection
• what content they downloaded

Additionally, one may record other data such as:

• any site they came to yours by via a link
• the hardware/software combination they use
(e.g. Unix, Windows, Netscape, IE)

22

Ex: A typical entry in an access_log file:

168.122.230.172 - - [16/Feb/2001:08:42:52 -0500] "GET /people/tkohl/teaching/sprin
g2001/secant.pdf HTTP/1.1" 200 0 "http://math.bu.edu/people/tkohl/teaching/spri
ng2001/MA121.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

168.122.230.172

[16/Feb/2001:08:42:52 -0500]

"GET /people/tkohl/teaching/spring2001/secant.pdf HTTP/1.1"

200 0

"http://math.bu.edu/people/tkohl/teaching/spring2001/MA121.html"

"Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

IP address of visitor

time

content they retrieved

server response code

referrer

client software and archictecutre

168.122.230.172 - - [16/Feb/2001:08:42:52 -0500] "GET /people/tkohl/teaching/sprin
g2001/secant.pdf HTTP/1.1" 200 0 "http://math.bu.edu/people/tkohl/teaching/spri
ng2001/MA121.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

In order to parse this file and extract the relevant information, say for some statistical
analysis or whatever, we need to describe log entries with a regular expression
and extract the different components.

sub parse_log{
my $entry = $_[0];
$entry =~ /([\d\.]+) \- \- (\[[^\]]+\]) \"([^\"]+)\" (\d+ \d+)

\"([^\"]+)\" \"([^\"]+)\"/;
return ($1,$2,$3,$4,$5,$6);

}

Let's examine the pattern to clarify what's going on.

Here is a subroutine for parsing entries such as the one above.

23

168.122.230.172 - - [16/Feb/2001:08:42:52 -0500] "GET /people/tkohl/teaching/sprin
g2001/secant.pdf HTTP/1.1" 200 0 "http://math.bu.edu/people/tkohl/teaching/spri
ng2001/MA121.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

Discounting the spaces and dashes between the entries, here are the patterns describing
the portions to memorize.

([\d\.]+) ip address

(\[[^\]]+\]) date (including the brackets

\"([^\"]+)\" content downloaded

(\d+ \d+) status code

\"([^\"]+)\" referrer

\"([^\"]+)\"/ client info

(\[[^\]]+\])

a real [

the class of things other than]
(one or more occurrences)

a real]

([\d\.]+)

the class of digits or periods .
one or more occurrences

IP address

date

24

\"([^\"]+)\" content downloaded
referrer
client information

look for literal "

class of things other than literal "
one or more occurrences

(\d+ \d+)

two numbers with a space in-between

status code

So now, the components of the log entry are returned as an array
from the parse_log function.

So we might use it in a larger script as follows:

open(LOG,"/usr/local/apache/logs/access_log");
while($line=<LOG>){

($ip,$date,$content,$status,$referrer,$client)=parse_log($line);
do something with the components

}
close(LOG);

25

CGI

CGI stands for 'Common Gateway Interface' and is a method (really a collection
of methods) for passing information from a client to a web server.

This is the primary mechanism for, amongst other things, processing fill out
forms on web pages.

For example, entering a query into a search engine of some sort.

We will not be discussing the CGI mechanism in detail, but rather,
illustrate a simple forms interface to a cgi script written in Perl.

Our demo will consist of a simple form for a user to enter in biographical
information. This will then be submitted and displayed by the server.

The page itself will look like this.

There will be
6 variables passed
from the form
to the CGI script
for processing.

firstname
lastname
month
day
year
gender

26

<HTML>
<TITLE>
Test of Plain CGI
</TITLE>
<BODY>
<FORM METHOD="GET" ACTION="/cgi-bin/cgitest_plain">
First Name:
<INPUT TYPE="text" NAME="firstname" VALUE="" MAXLENGTH=20 SIZE=10>
Last Name:
<INPUT TYPE="text" NAME="lastname" VALUE="" MAXLENGTH=20 SIZE=10>
<P>
What is your Birthday?

<SELECT NAME="month">
<OPTION VALUE="January" SELECTED> January
<OPTION VALUE="February"> February
<OPTION VALUE="March"> March
<OPTION VALUE="April"> April
<OPTION VALUE="May"> May
<OPTION VALUE="June"> June
<OPTION VALUE="July"> July
<OPTION VALUE="August"> August
<OPTION VALUE="September"> September
<OPTION VALUE="October"> October
<OPTION VALUE="November"> November
<OPTION VALUE="December"> December

</SELECT>

Here is the source.

script which
processes
data from form

firstname and lastname

month they were born

the day of the month
they were born

<SELECT NAME="day">
<OPTION VALUE="1" SELECTED> 1
<OPTION VALUE="2"> 2
<OPTION VALUE="3"> 3
<OPTION VALUE="4"> 4
<OPTION VALUE="5"> 5
<OPTION VALUE="6"> 6
<OPTION VALUE="7"> 7
<OPTION VALUE="8"> 8
<OPTION VALUE="9"> 9
<OPTION VALUE="10"> 10
<OPTION VALUE="11"> 11
<OPTION VALUE="12"> 12
<OPTION VALUE="13"> 13
<OPTION VALUE="14"> 14
<OPTION VALUE="15"> 15
<OPTION VALUE="16"> 16
<OPTION VALUE="17"> 17
<OPTION VALUE="18"> 18
<OPTION VALUE="19"> 19
<OPTION VALUE="20"> 20
<OPTION VALUE="21"> 21
<OPTION VALUE="22"> 22
<OPTION VALUE="23"> 23
<OPTION VALUE="24"> 24
<OPTION VALUE="25"> 25
<OPTION VALUE="26"> 26
<OPTION VALUE="27"> 27
<OPTION VALUE="28"> 28
<OPTION VALUE="29"> 29
<OPTION VALUE="30"> 30
<OPTION VALUE="31"> 31
</SELECT>

27

Year <INPUT TYPE="text" NAME="year" VALUE="" MAXLENGTH=4 SIZE=4>
<P>
<INPUT TYPE="radio" NAME="gender" VALUE="male">male
<INPUT TYPE="radio" NAME="gender" VALUE="female">female
<P>
<INPUT TYPE="reset" VALUE="CLEAR">
<INPUT TYPE="submit" VALUE="SUBMIT">
</FORM>
<HR>

the year they were born

their gender
(note it's of type
radio which allows
only one value or
the other)

reset all the fields in the form

submit data and initiate script

Now, without delving too deeply into how CGI works, we note the
line which references the actual script which will do the work

<FORM METHOD="GET" ACTION="/cgi-bin/cgitest_plain">

in particular the method GET will append the form variables to the URL of the
submitted request in the following format:

/cgi-bin/cgitest_plain?var1=value1&var2=value2&var3=value3 etc.

That is, the script will receive the form data, separated by & which means
some processing will be necessary to extract the information.

28

Ex:

will result in the following URL

http://math.bu.edu/cgi-bin/cgitest_plain?firstname=Fred&
lastname=Flintstone&month=January&day=10&year=2001&gender=male

Here is the output of
the script.

29

So what about the script itself? Most commonly, these scripts are contained in the
cgi-bin area of the web server.

#!/usr/local/bin/perl5
$query=$ENV{'QUERY_STRING'};
foreach $pair (split(/\&/,$query)){
 ($varname,$value)=split(/=/,$pair);
 $DATA{$varname}=$value;
}
print "Content-type: text/html\n\n";
print "<HTML><HEAD>\n";
print "<TITLE>Test of Plain CGI (Output from Processed Form)</TITLE>\n";
print "</HEAD><BODY>\n";
print "<H2>Your name is $DATA{firstname} $DATA{lastname}</H2>\n";
print "<H2>You are a $DATA{gender}.</H2>\n";
print "<H2>Your birthday is $DATA{month} $DATA{day} $DATA{year} </H2>\n";
print "</BODY></HTML>\n";

As this is a basic example, the script isn't that long.

$query=$ENV{'QUERY_STRING'};
foreach $pair (split(/\&/,$query)){
 ($varname,$value)=split(/=/,$pair);
 $DATA{$varname}=$value;
}

The %ENV associative array carries a lot of information about the user's
working environment. In this case, the form data 'QUERY_STRING' is
passed to the script.

So here, we would have:

$query="firstname=Fred&lastname=Flintstone&month=January&
day=10&year=2001&gender=male"

30

To extract the form data from this string, we use the split() function

foreach $pair (split(/\&/,$query)){
 ($varname,$value)=split(/=/,$pair);
 $DATA{$varname}=$value;
}

In this case, splitting along & yields the following array to loop over with foreach

(firstname=Fred,lastname=Flintstone,month=January,day=10,year=2001,
gender=male)

We can now split each element $pair of this array into a key and value
and insert it into an associative array called %DATA

Afterward, %DATA will look like this

%DATA = (firstname=>Fred,
 lastname=>Flintstone,

 month=>January,
 day=>10,
 year=>2001,
 gender=>male);

Normally, we might put the keys above in " but as the names contain no
special characters, we can do get away without using quotes.

31

Now, to display the resulting web page we proceed as follows:

print "Content-type: text/html\n\n";
print "<HTML><HEAD>\n";
print "<TITLE>Test of Plain CGI (Output from Processed Form)</TITLE>\n";
print "</HEAD><BODY>\n";
print "<H2>Your name is $DATA{firstname} $DATA{lastname}.</H2>\n";
print "<H2>You are a $DATA{gender}.</H2>\n";
print "<H2>Your birthday is $DATA{month} $DATA{day}, $DATA{year}.</H2>\n";
print "</BODY></HTML>\n";

print "Content-type: text/html\n\n";

First, to identify the output as an html page to the browser, we need this line.

Without this, the browser won't render the page, in fact an error code
will be returned.

print "<HTML><HEAD>\n";
print "<TITLE>Test of Plain CGI (Output from Processed Form)</TITLE>\n";
print "</HEAD><BODY>\n";
print "<H2>Your name is $DATA{firstname} $DATA{lastname}.</H2>\n";
print "<H2>You are a $DATA{gender}.</H2>\n";
print "<H2>Your birthday is $DATA{month} $DATA{day}, $DATA{year}.</H2>\n";
print "</BODY></HTML>\n";

The rest of the script writes the html that is then rendered by the browser,
with our form data included.

32

Simple Web Clients

Say one wishes to, without using a browser, download some data
from a website.

Ex:
#!/usr/local/bin/perl5
use LWP::Simple;
print get($ARGV[0]);

 call this ‘geturl’

>geturl http://www.bu.edu

The output will be the literal HTML code of the BU homepage,
which may not be terribly interesting, but there are other ways
of using such data.

Let’s consider a more interesting example.
If we wish to find the academic calendar for the 2004/5 academic year,
it is located at http://www.bu.edu/reg/cal0405.htm

33

Now suppose we wish to extract the information from this page.
The raw output of our script includes a lot of HTML code which
certainly isn’t essential information.

However, we can extract the information we want by observing
that the relevant information we want lies within tags such as these

<TD>Instruction Begins </TD>

So we can modify our script, to, in fact, retrieve just this URL and
do some custom filtering of the data.

#!/usr/local/bin/perl5
use LWP::Simple;
$URL="http://www.bu.edu/reg/cal0405.htm";
@DATA=split(/\n/,get($URL));
foreach (@DATA){
 if(/\<TD\>\(.*)\<\/font\>/){
 $item=$1;
 print "$item\n";
 }
}

 which, when run yields

Instruction Begins
Wednesday, May 19, 2004
Holiday, Classes Suspended
Monday, May 31, 2004
Instruction Ends
Wednesday, June 30, 2004
Instruction Begins
Tuesday, July 6, 2004
Instruction Ends
Friday, August 13, 2004
.
. etc

call this getcal

Let’s add a line between each logical
entry.

34

#!/usr/local/bin/perl5
use LWP::Simple;
$URL="http://www.bu.edu/reg/cal0405.htm";
@DATA=split(/\n/,get($URL));
foreach (@DATA){
 if(/\<TD\>\(.*)\<\/font\>/){
 $item=$1;
 print "$item\n";
 ($item=~/200(4|5)/) && (print ”\n”);
 }
}

And now the output looks a bit neater:

Instruction Begins
Wednesday, May 19, 2004

Holiday, Classes Suspended
Monday, May 31, 2004

Instruction Ends
Wednesday, June 30, 2004

.. Etc.

Of course, we could look at the original web page and observe that
there is a link to a PDF version of the calendar.

Perhaps we could
grab just this file
and put it in our
home directory.

35

Indeed, we can!
We note that this link point to the file/URL

http://www.bu.edu/reg/images/cal0405.pdf

So….

geturl http://www.bu.edu/reg/images/cal0405.pdf > cal0405.pdf

where the ‘>’ indicates we should output the result to a file in our home directory
also called cal0405.pdf

We can then view this page at our convenience as follows:

acroread cal0405.pdf

The point in both cases is that these tools can give one the power
to extract data (potentially very volatile data) from a remote site
and use it in our own scripts, perhaps with a bit of filtering on our
part, but this is easy when using Perl!

36

References for further information on Perl

• Learning Perl by Randal L. Schwartz & Tom Christiansen (O'Reilly)

• Learning Perl/Tk by Nancy Walsh (O'Reilly)

• MySQL & mSQL by Yarger, Reese & King (O'Reilly)

• Programming Perl by Larry Wall, Tom Christiansen and Jon Orwant (O' Reilly)

• Programming the Perl DBI by Descartes & Bunce (O' Reilly)

• Perl in a Nutshell by Ellen Siever, Stephen Spainhour, and Nathan Patwardhan (O' Reilly)

• Official Guide to Programming with CGI.pm by Lincoln Stein (Wiley)

• Web Client Programming in Perl by Clinton Wong (O' Reilly)

• Perl for System Administration by David N. Blank-Edelman (O' Reilly)

Books

Web http://www.perl.com

http://www.cpan.org

 http://math.bu.edu/people/tkohl/perl My Perl Page!

Applied Perl

Boston University
Office of Information Technology

Course Number: 4095

Course Coordinator: Timothy Kohl

c 2007 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Office of Information Technology
111 Cummington Street
Boston, Massachusetts 02215

