
1

Introductory Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: September 2021

What is Perl?

• General purpose scripting language
developed by Larry Wall in 1987.

• Has many of the characteristics of C, the
various Unix shells, as well as text
processing utilities like sed and awk

1

2

2

A very basic Perl script

#!/usr/bin/perl
print "Hello world!\n";

Start up your favorite text editor and call this ‘hello’ and
enter in the following two lines.

After saving this file, exit the editor and do the following:

>chmod u+x hello

• Perl programs or ‘scripts’ are not compiled, but interpreted.

• In Unix, the u+x permission must be set to run the script.

• In Windows, perl scripts have a .pl as the file extension so you would call
this script hello.pl and the chmod command would not be needed.

We run this script simply by typing:
>hello

If ‘.’ (current directory) is not in your path, then you must invoke the program as
follows:

>./hello

Assuming no mistakes you should get:

Hello world!

So what's going on?

In Windows, one could also just double click on hello.pl (which won’t work as
expected) or issue the command

>hello.pl

from within a command shell.

3

4

3

print "Hello world!\n"; # produces output on screen

• \n is the newline character which puts the cursor at the start of next line

• A semi-colon is needed at the end of (almost) every line in a Perl script.

• Comments can be put on any line, and must start with a # character.

#!/usr/bin/perl tells Unix that the script which follows is to be
processed with the program /usr/bin/perl

• Common mechanism used by Unix scripting languages, utilities and shells

• It may be /usr/bin/perl or /usr/local/bin/perl depending on your system

• script is run after its syntax is checked first

• In Windows, the # isn’t needed, but the script is still checked for correctness first.

Let’s modify our hello script top make it interactive.

#!/usr/bin/perl
print "What is your name? ";
$name=<STDIN>;
chomp($name);
print "Hello there $name.\n";

If we run this, we get

>hello (or ./hello if your shell is misconfigured)

What is your name? Tim

Hello there Tim.
>

5

6

4

First we prompt the user for their name,

print "What is your name? ";

and then take input from the keyboard:

$name=<STDIN>;

This takes a line of standard input and assign it to the variable $name

(We’ll discuss variable nomenclature in the next section.)

So what’s happening here?

Since the line of standard input includes a \n at the end (when we hit ENTER)
this gets removed or ‘chomped’ by the command

chomp($name);

(This ‘chomping’ is something you should get used to seeing and using in any perl
script which takes input.)

Finally, we say hello

print "Hello there $name.\n";

7

8

5

Perl Variables and Operators

In Perl, there are three basic data types:

• Scalars
• Arrays
• Associative arrays (also called hashes)

Unlike C or C++, for example, there is no need to specify names or types of variables
at the beginning of a program.

Scalars consist of integer or floating point numbers or text strings.

Scalar variables begin with a $ followed by their name which can consist
of either letters (upper or lower case) or _ or numbers, with some exceptions
which we’ll discuss.

Scalars

$x = 3.5;
$name = "Tim";
$A_very_long_and_silly_looking_variable_name = 2;

Ex:

9

10

6

All numbers in Perl are double precision floating point numbers (integers too!)

Ex:
$x=3;
$y=-5.5;
$z=6.0E23; # exponential notation for 6 x 1023

One can also work in Octal (base 8) or Hexadecimal (base 16) as well.

As for strings, the only two types are single and double quoted.

Ex:
$x = "Hello\n"; # Hello followed by newline
$y = ’Hello\n’; # literally Hello\n

Within double quotes, special characters like \n, are interpreted properly.

Ex: \n newline
\t tab
\" literally "
\\ literally \

11

12

7

For single quoted strings, however, what’s in quotes gets printed as is.

print
’Left\tMiddle\tRight\n’;

So if we have

print "Left\tMiddle\tRight\n";

we get

Left Middle Right

yields

Left\tMiddle\tRight\n

Also, if you wish to embed variables inside strings and have the value substituted in
properly, you must use double quotes.

Ex:

will produce

Hello Tim

$name="Tim";
print "Hello $name\n";

13

14

8

+,-,*,/

The typical operators for numerical values are present:

2**3; # 8 since 23 = 8

5 % 2; # 1, since 5 divided by 2 leaves remainder 1

There is also an exponentiation operator,

as well as a 'modulus' operator for taking remainders

Additionally, there are the autoincrement ++ and autodecrement -- operators
as in C.

$a=2;
++$a; # $a now equals 3
--$a; # $a now equals 2 again

Ex:

$x=“A”;
++$x; # $x now equals B

Note, these also can be applied to character values as well.

15

16

9

For strings, there is a concatenation operator for combining two (or more) strings

It is given by . (a period)

$x="Hello";

$y="There";

$z=$x.$y; # $z is now "HelloThere"

Ex:

Note, if you want a space in between, you can do this

$z=$x.” “.$y; # $z is now "Hello There"

We saw earlier the chomp() function removes a trailing newline character
if one is present.

Ex:

$a="Hello There\n";
chomp($a); # $a now equals "Hello There"

$b="Hi There";
chomp($b); # $b still equals "Hi There"

There is also the function, chop(),which removes the last character in a string,
whether it is a newline or not, but this is deprecated.

17

18

10

Making Comparisons

If we wish to compare two scalars then we must choose the appropriate
comparison operator.

Comparison Number String

equal == eq
not equal != neq
less than < lt
greater than > gt
less than or equal <= le
greater than or equal >= ge

Ex: “023” < “23” is false, but
“023” lt “23” is true

so be aware of the data you are working with when making comparisons.

We’ll use these later, in the section on control structures.

Arrays

In Perl, arrays are lists of scalar values, either strings, or numbers.

Array variables, as a whole, are prefixed with the @ sign followed by the array
name which can consist of either letters, numbers, or _ characters.

Ex:

@X=(5,11,-6,12);

@People=("Tom","Dick","Harry");

@DaysOfWeek=("Mon","Tue","Wed","Thu","Fri","Sat","Sun");

@stuff=("Hi",3.1415,6,"Bye\n"); # mix and match!

They can be created and modified in a variety of ways, the simplest is to just list
the elements in the array.

19

20

11

Array elements are indexed starting from 0 and are accessed as follows:

Ex:

@X=(5,11,-6,12);
print "$X[2]\n";

yields

-6

That is, if the array is named @X then the ith element is $X[i]

Adding elements to an array can be done in several ways.

Ex:

@People=("Tom","Dick");
@People=(@People,"Harry")

@People=("Tom","Dick","Harry");

So now,

Note, if one instead did

@People=("Harry", @People);

@People=("Harry","Tom","Dick");

then

21

22

12

One can also add an element by means of the array index.

@X=(3,8,-2);
$X[3]=5;

@X=(3,8,-2,5);

Ex:

So now

That is, we have added a fourth element to the array. (at array index 3)

One can also copy arrays in a very simple manner.

@Names=("Tom","Dick","Harry");
@CopyOfNames=@Names;

@CopyOfNames=("Tom","Dick","Harry");

So now,

23

24

13

One can also take a 'slice' of an array.

Ex: @Planets=("Mercury","Venus","Earth","Mars”,
"Jupiter","Saturn","Uranus",
"Neptune","Pluto");

@InnerPlanets=@Planets[0..3];

So now, @InnerPlanets=("Mercury","Venus","Earth","Mars");

Also, one may include other ranges, e.g.

@SomePlanets=@Planets[0..1,7..8];

thus @SomePlanets=("Mercury","Venus",”Neptune”,”Pluto”);

(Keep in mind, element 0 is the first element in the array.)

@People=("Tom","Dick","Harry");

@MorePeople=("John","Jim");

@Combined=(@People,@MorePeople);

Combining two arrays is also very easy:

@Combined=("Tom","Dick","Harry","John","Jim");

So now,

Ex:

25

26

14

There is a built-in sort() function for sorting the elements of an array.

Ex:

@People=("Tom","Dick","Harry");
@People=sort(@People);

@People now equals ("Dick","Harry","Tom");

• By default, the sorting is based on the ASCII (i.e. dictionary) value of the
strings.

• There is also a way to sort arrays in numerical order.

Associative Arrays

An associative array is a structure consisting of pairs of scalars, a key and
a value, such that each value is associated to a key.

Associative array variables, as a whole, are prefixed with % followed by the
name which can consist of either letters or numbers or _ characters.

27

28

15

As with regular arrays, individual elements are accessed with a $.

Typically, associative arrays are created and augmented on the fly,
just by giving key and value pairs.

$Grade{"Tom"}="A";

$Grade{"Dick"}="B";

Ex:

note {} instead of []
for associative arrays

That is, %Grade is an associative array with (right now) two key
and value pairs, which were given by the two assignment statements.

We could have also done this with the following statement:

%Grade = ("Tom" => "A","Dick” => "B");

29

30

16

A very useful function to apply to an associative array is keys()

As the name suggests, this returns all the keys in a given associative array,
in ordinary array form.

Ex:

%Grade=("Tom"=>"A","Dick"=>"B","Harry"=>"C");

@Students=keys(%Grade);

@Students now equals ("Tom","Dick","Harry")

undefined values

print "$a";

If a scalar value is referred to, but has not been assigned a value, Perl gives it the
default value of undef which literally means undefined.

So, for example, if $a has not been defined, then

will produce no output, but will not generate an error either.

31

32

17

Likewise

@X=(3,7,9,2);
print "$X[10]";

will produce no output.

The point being that any array element not yet defined has the value undef.

And if

%Grade=("Tom" => "A","Dick"=>"B");

then $Grade{"Harry"} is undef since we have not given it a value.

Perl Control Structures

In Perl, there are a variety of familiar loop structures and conditionals.
Some of the syntax is similar to C.

All of these are built around what's known as a statement block which
is simply a sequence of statements, surrounded by { and }

Conditionals

Ex:

$entry=<STDIN>;
chomp($entry);
if($entry eq "Thank You"){

print "You are Welcome!\n";
}

33

34

18

$entry eq "Thank You"

The conditional itself

is within parentheses and the value returned is either true or false.

If true, then the block within { and } is executed.

Before going further, here is a basic guide as to what is true or false in Perl:

• "0" and "" (the empty string) and undef are false.

• all else is true*

* Note, "0.0" evaluates to true since, as a string, "0.0" is not "0"

What Perl does, is to first convert any scalar to string, then apply the above rules.

35

36

19

Why should we care that “0” and undef are false?

Ex:

if($go){
print “Time to go!\n”;

}

This print statement won’t be invoked if the variable $go
has not been set. e.g the value of this variable is based
upon some input from the user.

This can be useful as we will see in subsequent tutorials.

In addition to if, one also has an else construction.

print "What\'s the password? ";
$entry=<STDIN>;
chomp($entry);
if($entry eq ”FOOBAR"){

print "Access Granted\n";
}else{

print "Incorrect Password!\n";
}

If the conditional is true, ($entry eq ”FOOBAR") then the
print statement inside the first set of { and } is executed,

otherwise the "Incorrect Password!" message gets printed.

37

38

20

Also, one can combine conditionals using

|| logical or

&& logical and

if(($day eq "Monday") && ($time eq "7AM")){
print "Time to get up!\n";

}

Logical not is given via !

if(!($password eq ”FOOBAR")){
print "Access Denied\n";

}

loops

Ex:

$n=1;
$sum=0;
while($n<=10){

$sum = $sum + $n;
$n++;

}
print "The sum of the numbers from 1 to 10 is $sum\n";

One has many of the familiar loop constructions.

Consider the following examples.

39

40

21

#!/usr/bin/perl
while($line=<STDIN>){

chomp($line);
print “[$line]\n”;

}

A useful example of a while loop is one which takes multiple lines of standard
input and process each line in some fashion. For example:

If we call this script ‘bracket’ then we can take input from a Unix pipe and surround
each line with [] for example

> ls –al | bracket

This keeps repeating as long as
there is input to be read in.

There is also a for statement.

Ex:
$sum=0;
for($n=1;$n<=10;$n++){

$sum = $sum + $n;
}
print "The sum is $sum\n";

The general syntax is:

for(initial_expression;test_expression;increment_expression){
statement block

}

41

42

22

There is a nice generalization of for() used to loop over the elements of an array.

Ex:

@People=("Tom","Dick”,"Harry");
foreach $person (@People){

print "$person\n";
}

yields (as you might expect)

Tom
Dick
Harry

Note, this works regardless of the
size of the array.

Also, one does not need to keep track of
the array index.

One can use the foreach() function together with the keys() function
to examine the contents of an associative array.

Ex:

%Grade=("Tom"=>"A",
"Dick"=>"B",
"Harry"=>"C"
);

@People=keys(%Grade);
foreach $person (@People){

print "$person received a $Grade{$person} \n";
}

keys(%Grade) is the array ("Tom","Dick","Harry")
extracted from the associative array %Grade;

i.e.

43

44

23

Regular Expressions (a.k.a. 'regexps')

• one of the most powerful features of Perl

• process text using what are known as regular expressions

• regular expressions are a means of doing pattern matching on strings.

The general syntax for a pattern is

/pattern/

where pattern is the text pattern we are trying to describe.

The general syntax to see if a string matches a certain pattern is:

$x =~ /pattern/

For example, to see if $x contains the word hello we might write:

if($x =~ /hello/){
#do something

}

pattern matching operator

i.e. If the pattern matches, then the conditional has value true.

45

46

24

By default, pattern matching is case sensitive, so the following
strings would match:

$x="hello there"
$x="I just called to say hello"
$x="Othello by William Shakespeare"

yes! this is a match

but something like

$x="Hello to you!"

would not (the capital H makes a difference)

Note, to ignore the distinction between upper and lower case
one can do the following:

if($x =~ /hello/i){
#do something

}

The i after the / means ignore
case.

47

48

25

One way to make the pattern more flexible is to use alternation.

Ex:

$x =~ /th(is|at)/

is true if $x matches either

thatthis or

The (|) allows us to choose one or more possibilities.
For example, we could do:

$x =~ /th(is|at|en)/

to look for ‘this’ ‘that’ or ‘then’

Regular expressions allow us to be quite general about the patterns we look for.

Ex: Match all strings which have the letter a followed by at least one text
character. (i.e. something other than \n)

/a./

the letter a
any text character

but not
"a"
"a\n"

So these would match

"apple"
"this and that"

no text characters after the a

49

50

26

For more variability, we can also match on multiples of characters.

multipliers.

* zero or more occurrences of the previous entity
+ at least one of the previous entity
? 0 or 1 instances of the previous entity
{n} n instances of the previous entity
{m,n} between m and n instances of the previous entity

Ex:

/be*t/

would match "bet" and "beet" or even "bt"

If we change * to + then

/be+t/

matches "bet" and "beet" but not "bt"
since the e+ means at least one instance of the letter e

If we change this to say

/b.+t/

then this would match "boot", ”belt”, "bet", "bat", "b t" etc.
since .+ means match one or more of any character

Again, the pattern just has to exist somewhere in the string in order to match.

51

52

27

Say we wish to see if there is a vowel somewhere in a given string.

We could do this as follows.

if($x=~/[aeiou]/){
print ”Found a vowel!\n";

}

The [] indicates a specific class of characters which we want to match.

In this case, one of the five vowels.

classes

If we wish to match any lower case letter, then we can use

/[a-z]/ # i.e. all the letter from a to z

to include upper case letters we use

/[a-zA-Z]/ # all letter from a to z and A to Z

Likewise, we can also match digits.

/[0-9]/

53

54

28

There are also a number of pre-defined classes one can use which have
abbreviations.

digits [0-9] \d
words [a-zA-Z_] \w
space [\n\r\t\f] \s

description class abbreviation

literally a space

These classes are useful particularly when constructing
complicated patterns.

To negate a class, use [^]

ex. [^x] everything but the letter x

\W non-word characters [^a-zA-Z_]
\S non-space characters [^ \r\n\t\f]
\D non-digit characters [^0-9]

One can combine pre-defined classes to make larger classes.

Ex:
$x=~/[\w\d]/

matches words and digits

55

56

29

anchoring patterns

Suppose we wish to specify where in a string a given pattern is matched.

For example, say we wish to see if a given string starts with a capital letter.

$sentence =~ /^[A-Z]/

The ^ is to test if the pattern is matched at the beginning of the string.

Note, due to an unfortunate reuse of symbols, this is not the same as
class negation seen earlier.

i.e. /[^A-Z]/ means match everything but A-Z !!

Likewise, we could test if a certain pattern is matched at the end of a string.

i.e. Say we wish to check if a certain string ends with the letter e

We could use the following:

$x =~ /e$/;

So this would match if

$x = "the"
but not if

$x = "the rest"

57

58

30

One can also anchor a pattern at a word boundary using the directive \b

Such a boundary occurs at the beginning of a string (or end) or at a transition from
a \w to a \W or vice versa.

Ex:

$x =~ /the\b/;

matches if

$x="the" or $x="the end"

but not
$x="then"

Matching somewhere that is not a word boundary can be done with \B

References for further information on Perl

• Learning Perl by Randal L. Schwartz & Tom Christiansen (O'Reilly)

• Programming Perl by Larry Wall, Tom Christiansen and Jon Orwant (O' Reilly)

• Perl in a Nutshell by Ellen Siever, Stephen Spainhour, and Nathan Patwardhan (O' Reilly)

Books

Web

http://www.perl.com

http://math.bu.edu/people/tkohl/perl My Perl Page!

59

60

31

Introductory Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

c 2021 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Information Services & Technology

61

