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Abstract

The holomorph of a group G is NormB(λ(G)), the normalizer

of the left regular representation λ(G) in its group of permutations

B = Perm(G). The multiple holomorph of G is the normalizer of

the holomorph in B. The multiple holomorph and its quotient by the

holomorph encodes a great deal of information about the holomorph

itself and about the group λ(G) and its conjugates within the holo-

morph. We explore the multiple holomorphs of the dihedral groups

Dn and quaternionic (dicyclic) groups Qn for n ≥ 3.

Key words: regular subgroup, holomorph

MSC: 20B35,20F28

Introduction

The holomorph Hol(G) of a (finite) group G can be presented in two

ostensibly different forms. The first is as G ⋊ Aut(G) the semi-direct prod-

uct of G by its automorphism group where (g, α)(h, β) = (gα(h), αβ). The
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other is as NormB(λ(G)) the normalizer in B = Perm(G) of the image

of the left regular representation λ : G → Perm(G) where λ(g)(h) = gh.

As shown in elementary texts like Hall [9] for example, the latter is iso-

morphic to the former since NormB(λ(G)) = ρ(G)Aut(G) where ρ(G) is

the image of the right regular representation ρ : G → Perm(G) where

ρ(g)(h) = hg−1 and Aut(G) is naturally embedded in B = Perm(G) as

{π ∈ NormB(λ(G)) | π(e) = e} where e is the identity element of G. One

confirms that ρ(G) ∩ Aut(G) is trivial, which together with the fact that

ρ(G) ⊳ NormB(λ(G)), yields the isomorphism with the semi-direct product.

When G is abelian, λ(G) = ρ(G), but if G is non-abelian, these are dis-

tinct subgroups of Perm(G). In either case one may show that Hol(G) =
NormB(λ(G)) = NormB(ρ(G)), which follows from the fact that λ(G) =
CentB(ρ(G)) and ρ(G) = CentB(λ(G)). This then motivates two questions.

The first is that, given G, what subgroups N ≤ B = Perm(G) have the

property that NormB(N) = Hol(G)? (aside from ρ(G) of course) The sec-

ond is, how are these N related to λ(G)? A way of answering both is em-

bodied in the notion of the multiple holomorph of G which (as defined by

Miller in [11]) is the normalizer in Perm(G) of Hol(G) which we shall de-

note NHol(G). This group, and in particular the quotient NHol(G)/Hol(G)
gives an answer to both these questions in the case where such N are reg-

ular subgroups of B (as defined below) which are (necessarily) conjugates

of λ(G).

Whereas Miller considered the structure of NHol(G) for G is abelian,

we shall consider the class of dihedral groups G = Dn (or order 2n) and

quaternionic groups Qn (of order 4n) for each n ≥ 3 and explicitly deter-

mine NHol(G) in each case, and also the regular subgroups that have the

same holomorph/normalizer as G. In particular we shall show that

Theorem For n ≥ 3

NHol(Dn)/Hol(Dn) ∼= {u ∈ Un | u2 = 1}

NHol(Qn)/Hol(Qn) ∼= {u ∈ U2n | u2 = 1}

where Un and U2n are respectively the units mod n and 2n.

We shall show first that Hol(N) = Hol(Dn) if and only if N is a conjugate

of λ(Dn) and N ⊳ Hol(Dn) then find those conjugates of λ(Dn) that are
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normal in Hol(Dn). From this, we construct a subgroup Mn ≤ B such that

NHol(Dn) ∼= Hol(Dn) ⋊ Mn where Mn
∼= {u ∈ Un | u2 = 1} where |Mn| is

precisely the number of conjugates of λ(Dn) that are normal in Hol(Dn).
Subsequently we shall consider the groups Qn and show how the multiple

holomorphs of these are related to those of the dihedral group of the same

order.

The question of which groups not necessarily isomorphic to G have the

same holomorph as G has appeared in the literature. In particular, Mills

[12] uses the term multiple holomorph in his study of which abelian groups

N have holomorphs which are isomorphic to a given abelian group G
where N may not be isomorphic to G. Mills himself indicates that this

is quite different than Miller’s definition. In particular, conjugacy consider-

ations do not apply at all, of course, if N 6∼= G. As such, the structure of

NHol(G)/Hol(G) has no direct bearing. However if there is another non-

isomorphic group of order |G| whose holomorph is isomorphic to that of G
then there is an isomorphism between the multiple holomorphs of each, a

fact which we shall use in our analysis of Dn and Qn.

The inspiration for this work arose from the author’s study of regu-

lar permutation groups, which are an essential part of the enumeration of

Hopf-Galois structures on separable field extensions. The key result in this

area (as given in [8]) is that such structures are in one-to-one correspon-

dence with regular subgroups of a certain symmetric group, normalized

by a fixed regular subgroup. Understanding normalizers of regular permu-

tation groups has connections with the classical theory of the group holo-

morph as elucidated in [4] and [2], and, as indicated above, in the author’s

own recent work.

1 Regularity and (Multiple) Holomorphs

To start with, we restrict our attention to certain classes of subgroups of B,

namely those which, like λ(G) and ρ(G), are regular permutation groups.

Definition 1.1: For a finite set Z, a subgroup N ≤ Perm(Z) is regular if

any two of the following properties holds:

3



1. n(z) = z for any z ∈ Z implies that n = eN the identity of N

2. N acts transitively on Z

3. |N | = |Z|

The first condition is used (e.g. [15]) as the definition of a semi-regular

subgroup, which will be needed in the discussion to follow. The subgroups

λ(G) and ρ(G) are canonically regular by the way they are defined. How-

ever regularity is not tied to just these representations. In fact, we have

the following (in the author’s opinion) very important fact about conjugacy

classes of regular subgroups, which is explicitly proven in [5] (but also used

in Ch. II, Section 19 of [6]) which we paraphrase here

Proposition 1.2: Any two regular subgroups of B = Perm(Z) which are

isomorphic (as abstract groups) are, in fact, conjugate in Perm(Z).

An obvious (yet important) consequence of this is that normalizers are

similarly related.

Corollary 1.3: If M and N are isomorphic regular subgroups of B = Perm(Z)
where M = σNσ−1 then NormB(M) = NormB(σNσ−1) = σNormB(N)σ−1.

An essential means for detecting when a regular subgroup of the nor-

malizer of a given regular permutation group has the same normalizer is

the following.

Proposition 1.4:[10, 3.8] Given a regular subgroup N of B, if M is a nor-

mal regular subgroup of NormB(N) then NormB(N) ≤ NormB(M) and if

|Aut(N)| = |Aut(M)| then NormB(N) = NormB(M).

Conversely, if N is regular and NormB(N) = Hol(G) then N ⊳ Hol(G)
so if N ∼= λ(G) then N is a normal subgroup of Hol(G) conjugate to λ(G)
in B. Another important consequence of Proposition 1.2 is that N , as a

regular subgroup of Perm(Z), is no different from λ(N) ≤ Perm(N) with

respect to the construction of NormPerm(Z)(N) as compared to Hol(N) =
NormPerm(N)(λ(N)). Specifically, one may show the following:
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Proposition 1.5:[10, 3.6,3.7] If N is a regular subgroup of B = Perm(Z),
then

NormB(N) = CentB(N)A(N,z)

where A(N,z) = {π ∈ NormB(N)|π(z) = z} for any chosen z ∈ Z. That is

NormB(N) ∼= Hol(N) = NormPerm(N)(λ(N)) = ρ(N)Aut(N). Moreover,

for any z1, z2 ∈ Z one has that CentB(N)A(N,z1) = CentB(N)A(N,z2).

The last statement above is particularly a consequence of the fact that

any two A(N,z1) and A(N,z2) are conjugate by any element of π ∈ NormB(N)
such that π(z1) = z2.

The appearance of CentB(N) bears some discussion, especially in the

context of regularity. Following [8] we have the following:

Definition 1.6: For N a regular subgroup of Perm(Z) define the opposite

group to N as Nopp = CentB(N).

We include here several easily verified properties of the opposite group

which can be found in section 3 of [10] for example.

Lemma 1.7: For N a regular subgroup of B = Perm(Z)

1. N ∩ Nopp = Z(N) the center of N

2. Nopp is also a regular subgroup of B

3. N = Nopp if and only if N is abelian

4. (Nopp)opp = N

5. NormB(N) = NormB(Nopp)

Proof. Statement (1) is trivial and immediately implies (3). Statement (2)

is [8, Lemma 2.4.2] where Nopp may be constructed explicitly. Specifically,

if we select a distinguished element called ’1’ in Z then Nopp = {φn | n ∈ N}
where for z ∈ Z one has φn(z) = nzn(1) where nz ∈ N is that (unique!)

element such that nz(1) = z. Statement (4) comes from observing that
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N ≤ (Nopp)opp and since Nopp is regular then so must (Nopp)opp be regular.

As such, N ≤ (Nopp)opp implies |N | ≤ |(Nopp)opp| where now |(Nopp)opp| =
|N | by regularity. Statement (5) follows from Proposition 1.4 since certainly

Nopp ⊳ NormB(N) and N ∼= Nopp.

The last statement is an analogue of the equality λ(G)Aut(G) = ρ(G)Aut(G)
for B = Perm(G) and the relationship of ρ(G) to λ(G) broadly generalized

is encoded by the multiple holomorph.

Definition 1.8: For G a (finite) group with B = Perm(G) and Hol(G) =
NormB(λ(G)) define

H(G) = {N ≤ Hol(G) | N is regular and NormB(N) = Hol(G)}

= {N ⊳ Hol(G) | N is regular and N ∼= G}

= {N ⊳ Hol(G) | N = σλ(G)σ−1 for some σ ∈ B}

The above, along with Corollary 1.3 are the ingredients for Miller’s char-

acterization of the multiple holomorph. Recall that the multiple holomorph

is the normalizer NHol(G) = NormB(Hol(G)) where B = Perm(G). We

have the following which is essentially the first two paragraphs of [11].

Theorem 1.9: The elements of NHol(G)/Hol(G) determine those regular

subgroups of N ≤ Perm(G) such that NormB(N) = NormB(λ(G)) and

which, in turn, are precisely the conjugates of λ(G) that are normal subgroups

of Hol(G). That is NHol(G)/Hol(G) acts transitively and fixed-point-freely

on H(G).

Proof. If σ ∈ NHol(G) then σNormB(λ(G))σ−1 = NormB(λ(G)) and by

Corollary 1.3

NormB(σλ(G)σ−1) = NormB(λ(G))

and so σλ(G)σ−1 is a regular subgroup of B with the same holomorph as G.

Moreover σλ(G)σ−1 ⊳NormB(λ(G)) since σλ(G)σ−1 ⊳NormB(σλ(G)σ−1) =
NormB(λ(G)). Conversely, if for some σ ∈ B one has σλ(G)σ−1⊳NormB(λ(G))
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then by Proposition 1.4 clearly NormB(σλ(G)σ−1) = NormB(λ(G)) and

therefore σ ∈ NHol(G). It should also be noted that if N = σλ(G)σ−1 then

τλ(G)τ−1 = N if and only if τ ∈ σHol(G), the coset represented by σ. Con-

versely, if σλ(G)σ−1 = τλ(G)τ−1 then τσ−1 ∈ Hol(G). As such the distinct

cosets in NHol(G)/Hol(G) parametrize the normal subgroups of Hol(G)
that are conjugate to λ(G).

In [11] and [6] this construction for non-abelian groups is mentioned

in passing by considering the natural case of λ(G) 6= ρ(G) which have

the same holomorph. It is observed that if one picks τ ∈ B such that

τλ(G)τ−1 = ρ(G) (which must exist by Proposition 1.2) then adjoining τ to

Hol(G) yields a subgroup of NHol(G) called the double holomorph.

Of course NHol(G) may be larger, which is precisely the cases we are

interested in here. However, it is more efficacious to work with the quotient

T (G) = NHol(G)/Hol(G) and how it acts as a regular permutation group

on H(G). We explore some of the properties of T (G) in particular the role

of the mapping N 7→ Nopp for elements of H(G). As indicated above, T (G)
acts regularly on H(G). If for notational simplicity we identify λ(G) with

G then each N ∈ H(G) is uniquely of the form Gα = αGα−1, for each

α ∈ T (G). The regularity will allow us to show some interesting properties

of T (G) that are independent of the structural properties of G, except for

whether G (and hence every N ∈ H(G)) is abelian or not. We start by

observing that G = G1 and that for α, β ∈ T (G) that αGβα
−1 = Gαβ .

Proposition 1.10: If N ∈ H(G) where N = Gα then Nopp ∈ H(G). Also,

there exists a unique δ ∈ T (G) such that Nopp = δNδ−1 = Gδα. Moreover, if

G is abelian then δ = 1 and if G is non-abelian then |δ| = 2.

Proof. The first sentence is a consequence of Theorem 1.9, Lemma 1.7 and

the definition of T (G) and its acting regularly on H(G). The second is

due to the fact that the conjugate of a centralizer is the centralizer of the

conjugate, to wit δNoppδ−1 = (δNδ−1)opp. If G is abelian then Nopp = N so

that δ = 1 automatically by regularity. If G is non-abelian then so is any

such N and so Nopp 6= N which means that Gδα 6= Gα and so δ 6= 1 by

regularity. Furthermore δNoppδ−1 = (δNδ−1)opp = (Nopp)opp = N but this

means that Gδ2α = Gα which implies δ2 = 1, again by regularity!
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Corollary 1.11: If G is non-abelian then |T (G)| = |H(G)| is even.

For G = Dn as we will see it goes even further, T (G) is an elementary

abelian 2-group. The next result is a somewhat more abstract fact about

how the ( )opp operation is realized by elements of T (G).

Proposition 1.12: Given G = G1 ∈ H(G), if τ ∈ T (G) is that element such

that Gopp = Gτ = τGτ−1 then if α ∈ T (G) is arbitrary and δ ∈ T (G) is

such that δGαδ−1 = Gopp
α and if β ∈ T (G) is such that βGoppβ−1 = Gopp

β then

α = β and δα = ατ in T (G).

Proof. The basic layout is as follows:

G1

α

��

τ
// Gopp

1

β

��

Gα
δ

// Gopp
α

and where by the way T (G) acts and by regularity of this action we have

Gopp
α = Gδα = Gβτ . However, since Gopp

α = (αG1α
−1)opp = αGopp

1 α−1 =
αGτα

−1 = Gατ then we have Gopp
α = Gατ whence ατ = βτ and so α = β.

Lastly, we have that δα = ατ where |δ| = 2 by Proposition 1.12.

Note, in the above setup, we cannot conclude necessarily that δ = τ unless,

of course, T (G) is abelian.

Corollary 1.13: In the above setup, if G is non-abelian and T (G) is abelian

then δ = τ for all α ∈ T (G). That is, for any N ∈ H(G) one has Nopp =
τNτ−1 for that τ such that Gτ = Gopp.

Another somewhat interesting consequence of the above is that if G and

T (G) are non-abelian and T (G) has only one element of order 2, then

Z(T (G)) = 〈τ〉.

We should note that if one looks at the definition of the double holo-

morph in most sources, it is the aforementioned extension of Hol(G) by

this element whose square lies in Hol(G). However in [6] the authors call

the group generated by λ(G) and this element the double holomorph. But
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this is not quite the same object since it does not contain the entire holo-

morph of G. Also we should note that, in many cases, Hol(G) may contain

many regular subgroups isomorphic (and therefore conjugate) to λ(G) but

only those normal in Hol(G) have the same holomorph. Miller [11] shows

that for abelian groups, T (G) is trivial (and therefore H(G) = {λ(G)}) in

many instances, such as when the order of G is not divisible by 8. For the

rest, he shows that T (G) may still be trivial, or at most cyclic of order 2

or the Klein four-group, depending on the factors making up the 2-power

component of G.

2 Dihedral and Quaternionic Groups

We shall use the following presentation of the dihedral group of order 2n
and quaternionic group Qn of order 4n for n ≥ 3:

Dn = 〈x, t | xn = t2 = 1, xt = tx−1〉

= {taxb | a ∈ Z2, b ∈ Zn}

Qn = 〈x, t | x2n = 1, xn = t2, xt = tx−1〉

= {taxb | a ∈ Z2, b ∈ Z2n}

It is a standard fact that Aut(Dn) is isomorphic to Hol(Zn) ∼= Zn ⋊ Un,

where Un = Z
∗

n, specifically

Aut(Dn) = {φ(i,j) | i ∈ Zn, j ∈ Un} where

φ(i,j)(t
axb) = taxia+jb and φ(i2,j2) ◦ φ(i1,j1) = φ(i2+j2i1,j2j1)

It is also a classical fact (e.g. [6, pp.169–170]), that Aut(D2n) ∼= Aut(Qn)
for n ≥ 3, specifically Aut(D2n) ∼= Aut(Qn) ∼= Hol(C2n). In fact, still more

is true (and this too is classical) namely that Hol(D2n) ∼= Hol(Qn). We can

go one step further and observe that, since the underlying sets D2n and Qn

are identical, namely Z = {taxb|a = 0, 1; b = 0, . . . , 2n − 1}, then we have

the following from [10] which we quote verbatim:
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Proposition 2.1:[10, 3.10] For n ≥ 3, Hol(D2n) = Hol(Qn) as subgroups of

Perm(Z).

Proof. If taxb is in Z then we can define ρd(t
axb)(z) to be z(taxb)−1 where the

product is viewed with respect to the group law in D2n and ρq(t
axb)(z) =

z(taxb)−1 viewed with respect to the group law in Qn. If we define A =
{φi,j} to be the subgroup of Perm(Z) given by φi,j(t

cxd) = tcxic+jd, then A
is seen to be the automorphism group of both D2n and Qn simultaneously.

One can then verify that:

(a) ρq(x
b)φi,j = ρd(x

b)φi,j

(b) ρq(tx
b)φi,j = ρd(tx

b+n)φi+n,j

as permutations of Z, keeping in mind that in the dihedral groups t−1 =
t while in the quaternionic groups t2 = xn and t−1 = t3 = txn, and

that n ≡ −n (mod 2n). The point is that Hol(D2n) = {ρd(t
axb)φi,j} =

{ρq(t
axb)φi,j} = Hol(Qn) and that the image of the right regular representa-

tion of D2n,(respectively Qn) is a normal subgroup of Hol(Qn) (respectively

Hol(D2n)) and the result follows by Proposition 1.4.

The immediate consequence of this (and Theorem 1.9) is

Corollary 2.2: NHol(D2n) = NHol(Qn) as subgroups of Perm(Z) and

|H(D2n) = |H(Qn)| for n ≥ 3.

As to the actual computation of NHol(Dn) and H(Dn), some initial

setup is needed. We observe, and this will be important later, that C = 〈x〉
is a characteristic subgroup of Dn. Now, as Hol(Dn) = NormB(λ(Dn)) =
ρ(Dn)Aut(Dn) where B = Perm(Dn) we need to compute the left and right

regular representations of Dn as well as of one of the principal generators

of Aut(Dn) in B.

Lemma 2.3: These are the representations of the generators of λ(Dn),ρ(Dn)
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and one order n generator of Aut(Dn) as elements of Perm(Dn).

λ(x) = (1, x, . . . , xn−1)(t, txn−1, txn−2, . . . , tx)

λ(t) = (1, t)(x, tx) · · · (xn−1, txn−1)

ρ(x) = (1, xn−1, xn−2, . . . , x)(t, txn−1, . . . , tx)

ρ(t) = (1, t)(x, txn−1)(x2, txn−2) · · · (xn−1, tx)

φ(1,1) = (t, tx, tx2, . . . , txn−1)

Proof. These are based on the presentations of Dn and Aut(Dn) above.

Although one can compute the representation of φ(0,j) for j ∈ Un it turns

out to not be necessary for the computations we shall be doing. We shall

need, however, several operational details about the elements of Hol(Dn),
such as the orders of elements, as well as determining which act without

fixed-points. In particular we need to use both formulations of Hol(Dn), as

ρ(Dn)Aut(Dn) and as the semi-direct product Dn ⋊ Aut(Dn) consisting of

ordered pairs (taxb, φ(i,j)). To start with, we adopt the following convention:

(taxb, φ(i,j))(t
cxd) = ρ(taxb)φ(i,j)(t

cxd)

=

{

tcxic+jd−b a = 0

tc+1xb−ic−jd a = 1

(1)

One of the immediate implications of this is the following.

Lemma 2.4: The element (txb, φ(i,j)) has no fixed-points for any b, i, j and

(xb, φ(i,j)) acts without fixed-points provided ic + jd − b 6≡ d for all (c, d) ∈
Z2 × Zn.

Note that the identity element of Hol(Dn) is (t0x0, φ(0,1)) which of course

has 2n fixed-points.

The computations we do here will require extensive analysis of powers

of elements in Hol(Dn). As such we have the following.
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Lemma 2.5: The powers of (xb, φ(i,j)) and (txb, φ(i,j)) are given as follows.

(xb, φ(i,j))
e = (xbge(j), φ(ige(j),je))

(txb, φ(i,j))
2r = (x(i+(j−1)b)gr(j2), φ(i(1+j)gr(j2),j2r))

(txb, φ(i,j))
2r+1 = (tx(b+j(i+(j−1)b)gr(j2)), φ(i+ji(1+j)gr(j2),j2r+1))

where gp(j) = 1 + j + · · ·+ jp−1.

Proof. All of these start with the group law in Hol(Dn), namely that

(ta1xb1 , φ(i1,j1))(t
a2xb2 , φ(i2,j2)) = (ta1xb1ta2xi1a2+j1b2 , φ(i1+j1i2,j1j2))

together with a basic induction argument. The second and third cases

above give the even and odd powers of (txb, φ(i,j)) which highlights a simple

yet important fact, namely that (txb, φ(i,j)) never has order n (in Hol(Dn))
if n is odd.

Determining which regular subgroups of Hol(Dn), isomorphic to Dn,

are normal in Hol(Dn) is vastly simplified by the following fact about the

cyclic subgroup of order n that λ(Dn) and therefore any conjugate thereof

contains.

Proposition 2.6: If Cn = 〈x〉 then NormB(λ(Cn)) = NormB(λ(Dn)).

Proof. The group λ(Cn) is a cyclic semi-regular subgroup and as such, the

structure of the normalizer is known. As mentioned in passing in [14,

p.334] it is an example of a twisted wreath product. By a variation of the

argument in, for example [10, 5.6], it is isomorphic to the following semi-

direct product

(Zn × Zn) ⋊ (Un × S2)

where (as a subgroup of B) Zn×Zn corresponds to the pair of n-cycles that

make up λ(x), the action of Un = Z
∗

n is by multiplication of a given unit

u on both components of Zn × Zn simultaneously (and in B naturally as a

subgroup of Aut(Dn) which acts this way on λ(x)), and where the S2 = 〈τ〉
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acts coordinate-wise. That is, if v̂ = (a, b) ∈ Zn × Zn then τ(v̂) = (b, a) and

the multiplication in general is therefore

(v̂1, u1, τ
m1)(v̂2, u2, τ

m2) = (v̂1 + u1τ
m1(v̂2), u1u2, τ

m1+m2)

The wreath product structure can be more easily seen by observing that

restricting to those tuples (v̂, u, τm) where u = 1 one has the centralizer

CentB(λ(Cn)) ∼= Zn ≀ S2 which is a classical result, appearing in [1] for

example. The normalizer gives rise to the extra ’twist’ by the action of

Un. In either case, the sets X = {1, x, . . . , xn−1} and Y = {t, txn−1, . . . , tx}
which are the supports of the cycles that comprise λ(x), are blocks un-

der the action of both groups. The proof is finished by observing that

|(Zn × Zn) ⋊ (Un × S2)| = 2n2φ(n) = |Hol(Dn)| and so the containment

NormB(λ(Dn)) ≤ NormB(λ(Cn)) must be an equality.

Corollary 2.7: If σ ∈ NHol(Dn) then σλ(Dn)σ−1 ⊳ Hol(Dn) if and only

σλ(Cn)σ
−1 ⊳ Hol(Dn).

As such, one only need find all distinct σ〈λ(x)〉σ−1 that are normal sub-

groups of Hol(Dn) and each will give rise to σλ(Dn)σ−1 in H(Dn). If we

define Υn = {u ∈ Un | u2 = 1} then we will show the following.

Theorem H(Dn) = {〈(x, φ(u+1,1)), (t, φ(0,−u))〉 | u ∈ Υn} and there exists

Mn ≤ B such that Mn
∼= Υn and OrbMn

(λ(Dn)) = H(Dn) and consequently

that NHol(Dn) ∼= Hol(Dn) ⋊ Mn.

To show this we shall need to show that the only order n semi-regular

cyclic normal subgroups of Hol(Dn) are those of the form 〈(x, φ(u+1,1))〉. To

arrive at this enumeration, we need to filter the elements of Hol(Dn) by

order and semi-regularity. In particular, it is not enough for an individual

element to act fixed-point-freely, but for every non-trivial power of it to

act fixed-point-freely as well. Once this filtration is done, determining the

relevant order n normal semi-regular subgroup and constructing the group

Mn is actually very straightforward.

Proposition 2.8: No element of the form (txb, φ(i,j)) of order n generates a

normal subgroup of Hol(Dn).

13



Proof. We first recall the comment following Lemma 2.5 namely that if n
is odd then (txb, φ(i,j)) never has order n. So we are left with the case of

n being even. For n even, it is important to note that every element of Un

is an odd number. As such if 〈(txb, φ(i,j))〉 is normalized by Hol(Dn) then

every generator of Hol(Dn) must conjugate (txb, φ(i,j)) to an odd power.

Conjugation by (1, φ(i,j)) yields (txb, φ(i,j))
v for v = 2r + 1 ∈ Un and so

(1, φ(1,1))(tx
b, φ(i,j))(1, φ(−1,1)) = (tx1+b, φ(1+i−j,j))

= (txb, φ(i,j))
2r+1

= (txb+j(i+(j−1)b)gr(j2), φ(i+ji(1+j)gr(j2),j2r+1))

which yields two important equalities that must be satisfied:

1 = j(i + (j − 1)b)gr(j
2)

j2r = 1

From these we have that (i + (j − 1)b) and gr(j
2) are in Un. As such, since

(1 − j2)gr(j
2) ≡ 0 then j2 = 1 and therefore gr(j

2) = r which means that

r is a unit mod n. Now, if 〈(txb, φ(i,j))〉 is normalized by (1, φ(1,1)) then

since n is even then 〈(txb, φ(i,j))
2〉 is characteristic in 〈(txb, φ(i,j))〉 and so

must also be normalized by (1, φ(1,1)). However, since j2 = 1, (txb, φ(i,j))
2 =

(xi+(j−1)b, φ(i(j+1),1)) and

(1, φ(1,1))(x
i+(j−1)b, φ(i(j+1),1))(1, φ(−1,1)) = (xi+(j−1)b, φ(i(j+1),1))

but (xi+(j−1)b, φ(i(j+1),1)) must equal (txb, φ(i,j))
2v. But since |h| = n and we

have ghg−1 = hv and also gh2g−1 = h2 then it must be that 2v ≡ 2(mod n).
Here however v = 2r + 1 where r ∈ Un and we have 4r + 2 ≡ 2 and

therefore 4r ≡ 0 which implies that 4 ≡ 0 mod n. So immediately we

conclude that for n > 4, (txb, φ(i,j)) doesn’t generate a normal subgroup of

Hol(Dn) of order n. And for Hol(D4) one may verify that the only elements

of the form (txb, φ(i,j)) of order 4 are (txb, φ(2,1)) for b = 0, 1, 2, 3, as well as

(t, φ(2,−1)), (tx, φ(0,−1)), (tx2, φ(2,1)) and (tx3, φ(0,−1)), and that none of these

generate a subgroup that is normalized by (1, φ(1,1)).

As a result, the only possible order n semi-regular normal subgroups

must be generated by elements of the form (xb, φ(i,j)). It is interesting to

14



note that we did not have to check whether (txb, φ(i,j)) generated a semi-

regular subgroups (or if it was even fixed-point-free itself at all!). Nor did

we have to worry about conditions which would imply that (txb, φ(i,j)) has

order n which would, admittedly, be rather complicated.

Proposition 2.9: The only order n cyclic semi-regular normal subgroups of

Hol(Dn) are of the form 〈(x, φ(u+1,1))〉 where u ∈ Υn and each such u deter-

mines a distinct subgroup.

Proof. To prove the assertion we shall need to determine which such el-

ements (that generate semi-regular subgroups) are normalized by (x, I),
(t, I), (1, φ(1,1)) as well as (1, φ(0,w)) for w ∈ Un. Observe that

(1, φ(1,1))(x
b, φ(i,j))(1, φ(−1,1)) = (xb, φ(1+i−j,j))

= (xb, φ(i,j))
m for m ∈ Un

= (xbgm(j), φ(igm(j),jm))

which implies that

b = bgm(j)

1 + i − j = igm(j)

jm = j

So jm−1 = 1 which implies that gm(j) = gm−1(j) + 1 and therefore that

bgm−1(j) = 0 and igm−1(j) = 1 − j which means that (xb, φ(i,j))
m−1 =

(x0, φ(1−j,1)) which is a non-trivial element with fixed-points unless j = 1.

We immediately observe that (x, I) centralizes any element of the form

(xb, φ(i,1)).

Next, consider the action of (t, I) which, having order 2, must conjugate

(xb, φ(i,j)) to a power u such that u2 = 1, i.e. u ∈ Υn. We have

(t, I)(xb, φ(i,1))(t, I) = (xi−b, φ(i,1))

= (xb, φ(i,1))
u for u ∈ Υn

= (xbu, φ(iu,1))

15



which implies that b = bu and i = ui and that (since u2 = 1) that i =
(u + 1)b. The requirement that (xb, φ(i,1)) be fixed-point-free requires (by

Lemma 2.4) b 6= 0 and i 6= b. And subsequently, any non-trivial power

acts fixed-point-freely requires only that b ∈ Un and i − b ∈ Un which is

consistent with the condition i = (u + 1)b.

We now observe that

(1, φ(0,w))(x
b, φ((u+1)b,1))(1, φ(0,w−1)) = (xwb, φ(w(u+1)b,1))

= (xb, φ((u+1)b,1))
w

and so we have normalization by (1, φ(0,w)). Now, observe that (xb, φ((u+1)b,1))

has order n since b ∈ Un and concordantly (xb, φ((u+1)b,1))
b−1

= (x1, φ(u+1,1)).

The final observation to make is that by Lemma 2.5 each u ∈ Υn deter-

mines a distinct subgroup 〈(x, φ(u+1,1))〉.

Now, there are two ways to proceed from here. We can find, for each

semi-regular normal subgroup of Hol(Dn) of order n, an element of order

2 which together generate a regular normal subgroup isomorphic to Dn.

However, there is still the matter of constructing NHol(Dn) which requires

working within the ambient B = Perm(Dn) and in particular the represen-

tation of Hol(Dn) as a subgroup of B. What we shall do is to merge these

two tasks by constructing the elements of H(Dn) using the generators of

the cyclic order n subgroup given above and then construct NHol(Dn) as a

(split) extension of Hol(Dn) by a group Mn ≤ B (whence Tn
∼= Mn) that

not only conjugates λ(x) to each of these order n generators, but also λ(Dn)
as well. For convenience we shall actually construct Mn as the set of those

τ ∈ B such that τλ(x)−1τ = ρ(x)φ(u+1,1) where ρ(x)φ(u+1,1) corresponds to

(x, φ(u+1,1)) in the semi-direct product.

Theorem 2.10: If for u ∈ Υn we define τu ∈ B by the condition τ(xi) = xi

and τu(tx
i) = txui and let Mn = {τu | u ∈ Υn} then

(a) Mn
∼= Υn

(b) OrbMn
(λ(x)−1) = {ρ(x)φ(u+1,1) | u ∈ Υn}
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Proof. By Lemma 2.3 we have λ(x)−1 = (1, xn−1, . . . , x)(t, tx, . . . , txn−1) and

ρ(x) = (1, xn−1, xn−2, . . . , x)(t, txn−1, . . . , tx) and φ(1,1) = (t, tx, tx2, . . . , txn−1).
This means that φ(k,1) = (t, txk, tx2k, . . . ) and so

ρ(x)φ(k,1) = (1, xn−1, . . . , x)(t, txk−1, tx2k−2, . . . )

and therefore, for k = u + 1 we have

ρ(x)φ(u+1,1) = (1, xn−1, . . . , x)(t, txu, tx2u, . . . )

Observe that both λ(x)−1 and ρ(x)φ(u+1,1) have the cycle (1, xn−1, . . . , x) in

common. Moreover, it’s quite clear that φ(1,1) (and therefore φ(u+1,1) except

for u = −1) fix every element of X = {1, x, . . . , xn−1} but no elements of

Y = {t, txn−1, . . . , tx} since φ(1,1)(tx
b) = tx1+b. We want permutations τu ∈

B = Perm(Dn) which conjugate λ(x)−1 to ρ(x)φ(u+1,1) for each u ∈ Υn. If

we look at the cycle structure of both, it is easy to construct such elements,

namely define τu : Y → Y (and by extension from X ∪ Y = Dn to itself)

by τu(tx
i) = txui for each i ∈ {0, . . . , n − 1}. Since u ∈ Υn it is clear that

τ 2
u = I for each u. It should be noted that the τu may have fixed-points,

namely due to the existence of i ∈ Zn such that ui ≡ i(mod n). To see this,

consider the case n = 8 and u = 5 and observe that 2u = 2 and 4u = 4 so

that τ5 = (tx, tx5)(tx3, tx7).

If we now let Mn = {τu | u ∈ Υn} then it is readily verified that Υn
∼= Mn

by the obvious mapping u 7→ τu and that each is an elementary abelian

2-group. That OrbMn
(λ(x)−1) = {ρ(x)φ(u+1,1) | u ∈ Υn} is by construction.

Observe, by the way, that τ−1(λ(x)−1) = ρ(x)φ(0,1) = ρ(x) which implies

that τ−1 is the unique element of order 2 conjugating every N in H to its

opposite, as in Corollary 1.13.

Theorem 2.11: H(Dn) = {〈(x, φ(u+1,1)), (t, φ(0,−u))〉 | u ∈ Υn} = OrbMn
(λ(Dn))
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Proof. We first observe that

(t, φ(0,−u))(x, φ(u+1,1))(t, φ(0,−u)) = (tx−u, φ(−u(u+1),−u))(t, φ(0,−u))

= (tx−u, φ(−(u+1),−u))(t, φ(0,−u))

= (tx−utx−(u+1), φ(−(u+1),1))

= (x−(u+1)+u, φ(−(u+1),1))

= (x−1, φ(−(u+1),1))

= (x, φ(u+1,1))
−1

One may now verify that 〈(x, φ(u+1,1)), (t, φ(0,−u))〉 is normal in Hol(Dn) by

looking at the action of (t, I), (x, I), (1, φ(1,1)), and (1, φ(0,w)) for w ∈ Un, on

(t, φ(0,−u)). Specifically we have

(t, I)(t, φ(0,−u))(t, I) = (t, φ(0,−u))

(x, I)(t, φ(0,−u))(x
−1, I) = (t, φ(0,−u))(x, φ(u+1,1))

u−1

(1, φ(1,1))(t, φ(0,−u))(1, φ(−1,1)) = (t, φ(0,−u))(x, φ(u+1,1))
−u

(1, φ(0,w))(t, φ(0,−u))(1, φ(0,w−1)) = (t, φ(0,−u))

and so each of these copies of Dn are normal in Hol(Dn). Since (t, φ(0,−u))
corresponds to ρ(t)φ(0,−u) in B and ρ(t)φ(0,−u)(t

axb) = ta+1xub then

ρ(t)φ(0,−u) = Πb∈Zn
(xb, txub)

and since

λ(t) = Πb∈Zn
(xb, txb)

then it is obvious that τuλ(t)τ−1
u = ρ(t)φ(0,−u) and so each 〈(x, φ(u+1,1)), (t, φ(0,−u))〉

is regular and therefore OrbMn
(λ(Dn)) = H(Dn) where |H(Dn)| = |Mn|.

Corollary 2.12: NHol(Dn) ∼= Hol(Dn) ⋊ Mn where Mn acts on Hol(Dn) by

conjugation, that is T (Dn) ∼= Mn. Similarly T (Qn) ∼= M2n by virtue of the

relationship between Qn and D2n. Also, since we may regard Hol(D2n) as

equal to Hol(Qn) then OrbMn
(λ(Qn)) = H(Qn).
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Proof. That Mn conjugates ρ(x) to another subgroup of Hol(Dn) is imme-

diate from Theorem 2.10. The one verification to make is that Aut(Dn) is

conjugated to a subgroup of Hol(Dn). We have more since τuφ(i,j)τ
−1
u =

φ(ui,j) and so we have that Aut(Dn) is actually normalized by Mn, even

though, of course, Aut(Dn) is not itself a normal subgroup of Hol(Dn).
This is consistent with Mills’ determination of the (outer) automorphisms

of holomorphs of abelian groups in [13] since Aut(Dn) ∼= Hol(Cn). Specif-

ically he shows [13, Theorem 4] that the outer automorphism group of

Hol(Cn) must be an abelian 2-group. Lastly, the conjugates of λ(Qn) under

NHol(Qn)/Hol(Qn) are those by NHol(D2n)/Hol(D2n) since NHol(Qn) =
NHol(D2n) and Hol(Qn) = Hol(D2n).

3 Other Examples

With the case of Dn and Qn in mind, conjecturally it seems possible that if

G is non-abelian and T (G) is abelian then T (G) is generally (if not always)

an elementary abelian 2-group. For example, Carnahan and Childs show

in [3, Theorem 4] that when G is simple there are only two regular em-

beddings of G in its holomorph, to wit H(G) = {λ(G), ρ(G)}. Furthermore,

empirical evidence may be found using the GAP [7] computer algebra sys-

tem. Specifically, for all groups up to order 24, with the exception of two of

the groups of order 16 where T (G) is non-abelian, one finds that T (G) is an

elementary abelian 2-group. From another direction, a careful reading of

Miller shows that for an abelian group A, since Hol(A) is isomorphic to the

direct product of the holomorphs of the Sylow subgroups of A, that T (A)
is similarly a direct product of T (Ai) for each Sylow subgroup Ai of A. If

one can work out how T behaves upon taking group extensions in general,

then using Miller’s characterization of T (A) for A abelian, one may perhaps

readily determine T (S) for any solvable group S.

It also seems likely that the methods employed in this development may

be extended to deal with all split extensions of the form Zn ⋊ Z2 besides

just Dn. The centrality of Υn in the enumeration of T (Dn) is clear, but

moreover Υn exactly parametrizes these split extensions. (Thanks to Mark

Steinberger for reminding me of this.)
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