Hopf-Galois Theory for Fields

Objective: To generalize the notion of Galois extension by replacing the action of
a group by a larger object, a Hopf algebra.

Background:
Let R be a commutative ring with unity.

An R — Hopf algebra is an R-algebra H together with maps:

A: H— H ®pgr H comultiplication

€ : H — R counit

A: H — H antipode

e A and € are R-algebra maps
e )\ is an R anti-homomorphism (ie. A(hh') = A(R")A(h))
such that the following diagrams commute

(1) Co-associativity
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(3) Antipode property

o
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Hel e«  HeoH
m(h& A@I)

H

where
I (identity map on H)
m: H® H — H (multiplication on H)

. : R — H (R-algebra structure map for H)

Examples
The prototypical examples of Hopf algebras are group rings.
e (G a (finite) group

e H = R(G is a Hopf algebra via the following definitions of A, € and A:

where g € G and extend by linearity to all of RG.



With this definition, properties (1)-(3) are easily verified.
e.g.

m(I ® €)A(g) =m(I @ €)(g9 ® g)
=m(g®1)
=49
We say H is cocommutative if 7o A = A where 7 is the ’switch’ map, 7(z®y) =

Yy

So group rings are obviously cocommutative.



For general Hopf algebras, the comultiplication is given in ’Sweedler notation’

That is, if h € H then

h) =) ha)®he)
(h)

and can be extended to iterates of A unambigously by coassociativity.

eg.

A@y(h) = (I®A)A) = (A AR) = ha) ® he) ® b
(h)

e If H is a finitely generated, projective R-Hopf algebra then H* is also via:

A*(f)(h® k)= f(hk) for f € H* and h,k € H

e (f) = r1)
A () (h) = F(A(R))

Note(s):
o If H is f.g. proj. then H = H** as Hopf algebras

e H is comm (resp. cocomm) iff H* is cocomm (resp. comm)



Alternate view

One which makes the definitions of A, € and A more 'natural’ is follows.
GG representable functor from R — alg. to Grp

That is,

G(A) = Homp_qg(H, A) for some comm. R-alg. H for all comm. R-algebras A.

e representing algebra H is a Hopf algebra by virtue of the group structure on G(A)

LE.

mult. on G(A) <> comultiplcation on H

associativity <> coassociativity of A

inverse on G(A) <+ antipode on H

inverse for all group elements <+ antipode property



Example: the ’circle’ functor
C:R —alg. — Grp

C(A) = {(a,b) € R x R|a®> +b* =1}

group structure

(a,b)(c,d) = (ac — bd, ad + be)
(a7 b)_l - ((1, _b)
identity — (1,0)
This is representable, that is C(A) = Hompg_qg,(H, A) for
H = Rlc,s]/(c* +s*> - 1)

which is a Hopf algebra via the following definitions for A, € and A

Alc) =c®@c—s®s e(c)
A(s)=c®s+s®c e(s)

1 Ae)=c
0 A(s) = —s

This is called the trigonometric algebra due to the way the comultiplication
resembles the formulze:

cos(z + y) = cos(x)cos(y) — sin(z)sin(y)

sin(z + y) = cos(s)sin(y) + sin(x)cos(y)



Hopf Galois Extensions

e A a commutative R-algebra, finitely generated and projective as an R-module
e H a cocommutative R—Hopf algebra

Definition: A is an H-module algebra if there exists p : H — Endgr(A), an
R—algebra homomorphism such that for h € H and x,y € A:

(i) u(h)(zy) =Y p(h))(@)ulhe) ()
(h)
where A(h) = Z h1) ® h)

(h)
(i) pu(h)(1) = e(h)1

We refer to condition (i) by saying that H measures A to A.

Condition (ii) is simply the statement that

R C A" where
AP = {z € Alp(h)(z) = e(h)z Yh € H}

which is the fized subalgebra of A under the action of H.

A/R is an H-Galois extension if A is an H-module algebra such that

(1) R = AY

(2) A® H = Endp(A) via a ® b — (b au(h)(b))



Equivalent to u : H — Endgr(A) are maps
P HRA— A

an R-module map defining what’s called an H-comodule structure on A and
p':A—- A H

an R-algebra map making A into an H* object

With this, the following are equivalent:

(1) A/R is H — Galois
(2) p’ yields an isomorphism u’' ® 1: H ® A — Endgr(A)
(3) " yields an isomorphism A@ A -+ A® H*



Note: We can view (3) in the following context:
Notation: Spec(A) = Homp_q4(A,—) and Spec(H*) = Homp_q4(H*, —)

The map p” : A - A® H* can be dualized into a map
Spec(H™) x Spec(A) — Spec(A)
making Spec(A) into a Spec(H*)-set for the group scheme Spec(H*).

Recall H co-commutative implies H* is commutative so this makes sense.

IfAR A= AR H* then we call A a Galois H*-object and at the level of schemes
this translates into a bijection

Spec(H™) x Spec(A) — Spec(A) x Spec(A)

making Spec(A) a principal homogeneous space under the action of Spec(H™).

i.e. The map (g,z) — (gz,z) for g € Spec(H*) and = € Spec(A) is bijective.



For those extensions which are H-Galois there is a Galois type correspondance
between R-sub-Hopf algebras of H and subalgebras of A containing R.

Theorem [Chase, Sweedler Theorem 7.6]. If we define for an R-sub-Hopf
algebra W of H,

Fiz(W) = {z € Alp(w)(z) = e(w)z Yw € W} = AW
then the map
{W C H sub— Hopf algebra,} RN {E|R CECA, Ean R- subalgebra}

15 injective and inclusion reversing.

The case when Fiz is also surjective is of importance and will be discussed.



Examples

e /K Galois extension of fields with G = Gal(L/K)
e then L/K is also Hopf Galois with Hopf algebra H = KG.

e u: H— Endg(L) given as expected:

h:Zaigi €eH, z,ye L
p(h) (@) = aigi(z)

p(h)(my) = aigi(zy) =Y aigi(@)gi(y) = Y p(ha)(@)u(he)(y)
(h)

which comes from A(h) = > a;(g; ® g;)
as well as

pu(h)(1) = Zaigi(l)
== Zazl

= ¢e(h)1

Since the elements of G are a K-basis for Endg (L) then L ® H = Endg (L)
Hence, any extension which is Galois (in the usual sense) is Hopf Galois as well.

But what about field extensions which are not Galois in the usual sense?



Example

ow=+2

e Q(w) - a separable but non-normal extension of Q

e It is Hopf Galois for the Q-Hopf algebra H exhibited below.
N = (o) cyclic of order 3

¢ a primitive cube root of unity
Consider the group ring Q(¢, w)N.

Define a; = 0 + 02 and as = (%0 + (o? and let H = Qa1, as]

If we (for the moment) stipulate that

the action of H on Q(w) is then:

ar(w) = (w + (*w az(w) = *(Cw) + ¢(¢Pw)
=((+¢w  and =whw
— —w = 2w

Note also that a;(1) =2 and as(1) = 2.

If we treat Q(¢,w)N as a Q(({,w)-Hopf algebra then we can let the Hopf algebra
structure on H be induced from that on Q(¢,w)N, to wit:



Here, H measures Q(w) to itself, for example

a1(w-w)=m(c®o+ 0’ ® o) (ww)
= m(Cw ® Cw + CPw @ C*w)
— C2w2 4 Cw2

= —w2

Note: The action of H seems to be connected to the (ordinary Galois) extensions

Q(¢, w)/Q(¢) and Q(¢, w)/Q

Let’s explore this a bit....

Behind the scenes in the above example (and in the theory as a whole) is some sort
of faithfully flat descent.

Definition:

k a field

A a k-object of some sort (k-algebra, k-Hopf algebra etc.)

L an extension field of k.

Another such k-object B is called an L-form of A if L® B = L ® A as the corre-
sponding L-objects.



Setup
L/k be a Galois extension with I' = Gal(L/k)
S be a finite set
L% = Map(S, L) the L-algebra of set maps from S to L
generated by {us|s € S} where us(t) = 65+ and usus = 5 1us.
A group N acts on L® (by L-automorphisms) via permutations on S

This action is Galois (ala Galois theory of rings) or Hopf Galois (via the action of
H = LN) iff N is a regular subgroup of B = Perm(S).

That is, NV acts transitively and all point stabilizers are trivial.



Greither-Pareigis Theory

Greither and Pareigis give a characterization of Hopf Galois structures on separable
field extensions which we outline here.

If K/k is a separable (but not necessarily normal) field extension where

o I' = Gal(K/k) and A = Gal(K/K) as diagrammed below:

K

AN
/

K

k

Let

e S =T/A the set of left cosets of A in T

e B = Perm(S) (observe |S| = [K : k])

There is then an embedding I' C B where I' acts on S by left translation.
Fact (1) There is a T' equivariant, K-isomorphism, K @ K = K*

Fact (2) If K/k is Hopf Galois for some k-Hopf algebra H then there is a unique
regular subgroup N < B = Perm(S) (arising due to H) for which K ® H 2 KN
(ie H is a K-form of kN)



For (2) the idea is this, if K /k is H-Galois, this corresponds to a map

H@r K - K

If we base change up to K we get a map

(Ko, H) @z (K2, K) — (K @ K)

and by (1), K ® K = K% and so this is actually

(K H) @ K - K°

By faithful flatness, H is k-Hopf algebra iff K ® H is a K-Hopf algbera.

Moreover, K ® H is in fact KN for some group N which acts regularly on S.



Why?

By Hopf Galois-ness, K @ K = K ® H* and so KS~K®K =~ K®H* and so
K ® H* has K® as its underlying algebra.

A Hopf algebra structure on K must come from a group structure on S so S = N
and as such N must be regular.

Why?

A: K5 - K5 ® K5 = K5%5 corresponds to a map m : S x S — S which is
associative since A is co-associative, etc.

If N is a group then (KN)* is KN.

As such the base changed action is actually:

KN® K% — K*

Given this, we have the following;:



Theorem [Greither Pareigis 1987]. Let N C B be a subgroup. The following
are equivalent:

(a) There is a k-Hopf algebra H and an H-Galois structure on K [k which induces
N C B where H is a K-form of kN

(b) N is regular on S =T'/A and the subgroup T' C B normalizes N.

Observations:

e This theorem allows us to enumerate and classify H-Galois structures by deter-
mining the regular subgroups N of B = Perm(S) that are normalized by T" C B.

e Unlike what occurs in ordinary Galois theory, a given extension can have several
inequivalent Hopf Galois structures on it, where two H-Galois structures on K/k,
corresponding to regular subgroups N and N "in B, are equivalent if there is a I’
isomorphism between them.

e In fact, one can have two Hopf algebras H and H acting on K /k where H
corresponds to N and H to N which give inequivalent Hopf Galois structures,
even though N and N may be isomorphic as abstract groups!



Almost Classical Extensions

It is not necessary that a regular subgroup N C B that is normalized by I' be
contained in T'.

When N C T the associated Hopf Galois structure on K/k satisfies a stronger
version of the main theorem of Hopf Galois extensions.

Theorem - [Greither Pareigis 1987]. If K/k is almost classically Galois, then
there is a Hopf algebra H such that K/k is H-Galois and the main theorem holds
in its strong form.

That is, the map F'ix is not only injective but is surjective as well.



Recall the setup,

N
/

In the almost classical case, a regular subgroup is N,*¥ where

K

k
where S =T'/A and B = Perm(S)

N, is a normal complement A in r 3
(equivalently N = Gal(K/E) where K =F- K = EQ® K)

NJPP is the opposite subgroup to N < B
N, is regular by virtue of being a normal complement to A

NJPP is regular iff N, is regular.

In this case the Hopf algebra H is (K NZPP)L'



Observations

e Almost classical extensions very close to ordinary Galois extensions in terms of
the one to one correspondence b/w sub Hopf-algebras and subfields of K.

e There is still the feature of the multiplicity of Hopf Galois structures that can be
imposed on an extension

e For certain extensions, the only structures that arise are the almost classical ones.

e If /K is Galois in the usual sense (with group G / Hopf algebra KG) one can
sometimes find additional Hopf algebras which make L /K a Hopf Galois extension!.



The way that this theory is used is by rephrasing the condition
I' < B normalizes N < B

It is, of course, equivalent to I' < Normp(IN) but we can be go further.

Any two of the following implies the third:

(1) [N| = [5]

(2) N acts transitively

(3) N acts fixed point freely

So if N acts regularly on S then it acts regularly on itself as well.

Hence we can identify
B = Perm(S) = Perm(N)

where N is embedded as A(IV), the left regular representation of N.

So Normpg(N) = Normpg(A(IN)) which is an object known classically as Hol(N)
the holomorph of .



Fact: Aut(N) is (as a subgroup of Hol(N)) the set of all permutations in B which
fix the identity of N and so there is a canonical isomorphism

Hol(N) 2 N % Aut(N)

So we handle the enumeration by looking at when (and if) the condition

' < Hol(N)

holds for abstract groups I' and N.

Again, several N’s can give distinct actions but be isomorphic as abstract groups.



For example,

[K] 1998

e p an odd prime and n a positive integer

e k a field of characteristic zero

o K = k(w) with wP" = a € k where a is such that [K : k] = p"

e r = the largest integer between 0 and n such that K N k((pr) = k((pr) where (pr
denotes a primitive p"th root of unity

e K/k is separable, but not always normal

o It is H-Galois with H a K-Hopf algebra form of group ring(s) kN where K is the
normal closure of K/k.

e If » < n then there are p” Hopf Galois structures on K/k for which the associated
group N is cyclic of order p™.

e Of these, p™"(""=7) are almost classical and the rest are non almost classical.

e When r = n, there are p"~! H-Galois structures for which N & Cpn of which
only one is almost classical.

e In fact, these are the only structures possible.

e For this class of extensions, N must be cyclic.



Rough Sketch of Proof.
key parameter r

The situation looks like this,

N, = (o) is cyclic of order p™

o(w) = (prw

A = Gal(k(Gpn) /)

A isomorphic to a s.g. of Aut(N,) = (6) where °c = ¢™ with (1) = (Z/p"Z)*
In particular

A%((V’T_l(p_l)) ifl1<r<n
A=Y ford<p—1,0<e<n—1ifr=0



Identify A as this subgroup since I', = N, A = N, x A.
Ifr=0,d=1, and e = 0 then A = Aut(N,) (and so I' = Hol(N.,))

If r = n then k = k({pn) and K/k is already a Galois extension whereby K =K,
A = {1} and so we define I';, = N, = Gal(K/k).

Any Hopf Galois structure on K/k will correspond to a regular subgroup N of
B = Perm(I'y/A) = Spn normalized by I', and by the earlier remarks about
regularity, we must have |[N| = [K : k] = p™.

Cases

N cyclic of order p™ (hence regular) and moreover N = N°PP

Any such N has the form (¢, 67" ®=D) for i € (Z/p" 1 kZ)* for k=0...n—1
Almost classical structures?

Look for those N «T,.

If r = n, the extension is already Galois and so I' = N, and so N = N,

For 0 < r < n, (¢, 6" ®=D) 4T, iff

n<k+(r+1)
kEk>r—1

and the number of these is exactly p™n(rn—r),



For the general case one is looking for Ng < B normalized by I', < B.

For N cyclic of order p”, if Aut(N) = (§) then we can look at the p-subgroups of
Aut(N), namely (6?7 ®=D) for r = 0.n — 1.

As such we can define the r-th lower holomorph of N, Hol,.(N) as

N x (67 (=1))

This makes it easy to view I, as Hol,(N,)

So we want to look for those Ng < B such that
Hol,(N,) < Hol(Npg)

Main idea is to realize that Ng = BN, B~ for some 3 € B since both N, are cyclic
of order p™, hence conjugate in B.

As such
Hol,(N.,) < Hol(8N,5")

and so

Hol,. (83 'N,B3) < Hol(N,)

So we may look for such 71N, 3 in the subgroup lattice of Hol(N,).

For r < n there are precisely p” such groups, for r = n there are p"~!.



The fact that there are no more arises due the examination of when
I' < Hol(N)

where N has order p™.

In particular, we show that unless N is cyclic, the p-Sylow subgroup of Hol(NN) has
exponent strictly less than p”.

As such, for I' = T',,, each of which having the exponent of it’s p-Sylow subgroup
equalling p”, rules out any N but cyclic of order p™.

We can say something about uniqueness of Hopf Galois structures, in particular we
have the following interesting result due to Byott.

Theorem - [Byott 1996]. If L/K is Galois with group G where |G| = n then
L/K is Hopf Galois for a unique Hopf algebra if and only if n is Burnside number,
that is ged(n, d(n)) = 1 where ¢ is the Euler totient.

Examples, n = p, 2p, 3p, 5p, 17p, 257p
13p (for p #Z 1 (mod 13) p > 5)
3:5-17-23-53 83257



