Hopf-Galois Theory for Fields

Objective: To generalize the notion of Galois extension by replacing the action of a group by a larger object, a Hopf algebra.

Background:

Let R be a commutative ring with unity.

An R-Hopf algebra is an R-algebra H together with maps:

$$\Delta: H \to H \otimes_R H$$
 comultiplication

$$\epsilon: H \to R$$
 counit

$$\lambda: H \to H$$
 antipode

- Δ and ϵ are R-algebra maps
- λ is an R anti-homomorphism (ie. $\lambda(hh') = \lambda(h')\lambda(h)$) such that the following diagrams commute
 - (1) Co-associativity

$$H \xrightarrow{\Delta} H \otimes H$$

$$\downarrow_{\Delta} \qquad \qquad \downarrow_{I \otimes \Delta}$$

$$H \otimes H \xrightarrow{\Delta \otimes I} H \otimes H \otimes H$$

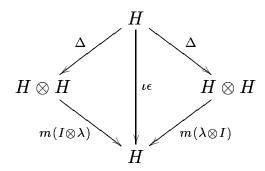
(2) Co-unitary property

$$H \xrightarrow{\Delta} H \otimes H$$

$$\downarrow I \qquad \qquad \downarrow m(\epsilon \otimes I)$$

$$H \otimes H \xrightarrow{m(I \otimes \epsilon)} H$$

(3) Antipode property



where

I (identity map on H)

 $m: H \otimes H \longrightarrow H$ (multiplication on H)

 $\iota:R\to H$ (R-algebra structure map for H)

Examples

The prototypical examples of Hopf algebras are group rings.

- \bullet G a (finite) group
- H = RG is a Hopf algebra via the following definitions of Δ , ϵ and λ :

$$\Delta(g) = g \otimes g$$

$$\epsilon(g) = 1_R$$

$$\lambda(g) = g^{-1}$$

where $g \in G$ and extend by linearity to all of RG.

With this definition, properties (1)-(3) are easily verified.

e.g.

$$m(I \otimes \epsilon)\Delta(g) = m(I \otimes \epsilon)(g \otimes g)$$

= $m(g \otimes 1)$
= g

We say H is **cocommutative** if $\tau \circ \Delta = \Delta$ where τ is the 'switch' map, $\tau(x \otimes y) = y \otimes x$

So group rings are obviously cocommutative.

For general Hopf algebras, the comultiplication is given in 'Sweedler notation'

That is, if $h \in H$ then

$$\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$$

and can be extended to iterates of Δ unambigously by coassociativity.

eg.

$$\Delta_{(2)}(h) = (I \otimes \Delta)\Delta(h) = (\Delta \otimes I)\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)} \otimes h_{(3)}$$

• If H is a finitely generated, projective R-Hopf algebra then H^* is also via:

$$\Delta^*(f)(h \otimes k) = f(hk)$$
 for $f \in H^*$ and $h, k \in H$
 $\epsilon^*(f) = f(1)$
 $\lambda^*(f)(h) = f(\lambda(h))$

Note(s):

- If H is f.g. proj. then $H \cong H^{**}$ as Hopf algebras
- H is comm (resp. cocomm) iff H^* is cocomm (resp. comm)

Alternate view

One which makes the definitions of Δ , ϵ and λ more 'natural' is follows.

G representable functor from $\mathbf{R} - \mathbf{alg_c}$ to \mathbf{Grp}

That is,

$$G(A) = Hom_{R-alg}(H, A)$$
 for some comm. R-alg. H for all comm. R-algebras A.

 \bullet representing algebra H is a Hopf algebra by virtue of the group structure on G(A)

I.E.

mult. on
$$G(A) \leftrightarrow \text{comultiplication on } H$$

associativity $\leftrightarrow \text{co}$ associativity of Δ

inverse on $G(A) \leftrightarrow$ antipode on H inverse for all group elements \leftrightarrow antipode property

Example: the 'circle' functor

$$\mathcal{C}:\mathbf{R}-\mathbf{alg_c}\to\mathbf{Grp}$$

$$C(A) = \{(a, b) \in R \times R | a^2 + b^2 = 1\}$$

group structure

$$(a,b)(c,d) = (ac - bd, ad + bc)$$
$$(a,b)^{-1} = (a,-b)$$
$$identity \to (1,0)$$

This is representable, that is $C(A) = Hom_{R-alg_c}(H, A)$ for

$$H = R[c, s]/(c^2 + s^2 - 1)$$

which is a Hopf algebra via the following definitions for Δ , ϵ and λ

$$\Delta(c) = c \otimes c - s \otimes s$$
 $\epsilon(c) = 1$ $\lambda(c) = c$
 $\Delta(s) = c \otimes s + s \otimes c$ $\epsilon(s) = 0$ $\lambda(s) = -s$

This is called the **trigonometric algebra** due to the way the comultiplication resembles the formulæ:

$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

$$sin(x+y) = cos(s)sin(y) + sin(x)cos(y)$$

Hopf Galois Extensions

- A a commutative R-algebra, finitely generated and projective as an R-module
- H a cocommutative R-Hopf algebra

<u>Definition</u>: A is an *H*-module algebra if there exists $\mu: H \to End_R(A)$, an R-algebra homomorphism such that for $h \in H$ and $x, y \in A$:

(i)
$$\mu(h)(xy) = \sum_{(h)} \mu(h_{(1)})(x)\mu(h_{(2)})(y)$$
 where $\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$ (ii)
$$\mu(h)(1) = \epsilon(h)1$$

We refer to condition (i) by saying that H <u>measures</u> A to A.

Condition (ii) is simply the statement that

$$R \subseteq A^H \text{ where}$$

$$A^H = \{x \in A | \mu(h)(x) = \epsilon(h)x \ \forall h \in H\}$$

which is the fixed subalgebra of A under the action of H.

A/R is an <u>H-Galois extension</u> if A is an H-module algebra such that

(1)
$$R = A^H$$

(2)
$$A \otimes H \cong End_R(A)$$
 via $a \otimes h \mapsto (b \mapsto a\mu(h)(b))$

Equivalent to $\mu: H \to End_R(A)$ are maps

$$\mu': H \otimes A \to A$$

an R-module map defining what's called an H-comodule structure on A and

$$\mu'':A\to A\otimes H^*$$

an R-algebra map making A into an \mathbf{H}^* object

With this, the following are equivalent:

- (1) A/R is H-Galois
- (2) μ' yields an isomorphism $\mu' \otimes 1 : H \otimes A \to End_R(A)$
- (3) μ'' yields an isomorphism $A \otimes A \to A \otimes H^*$

Note: We can view (3) in the following context:

Notation: $Spec(A) = Hom_{R-alg}(A, -)$ and $Spec(H^*) = Hom_{R-alg}(H^*, -)$

The map $\mu'':A\to A\otimes H^*$ can be dualized into a map

$$Spec(H^*) \times Spec(A) \rightarrow Spec(A)$$

making Spec(A) into a $Spec(H^*)$ -set for the group scheme $Spec(H^*)$.

Recall H co-commutative implies H^* is commutative so this makes sense.

If $A \otimes A \cong A \otimes H^*$ then we call A a **Galois** H^* -object and at the level of schemes this translates into a bijection

$$Spec(H^*) \times Spec(A) \rightarrow Spec(A) \times Spec(A)$$

making Spec(A) a principal homogeneous space under the action of $Spec(H^*)$.

i.e. The map $(g,x)\mapsto (gx,x)$ for $g\in Spec(H^*)$ and $x\in Spec(A)$ is bijective.

For those extensions which are H-Galois there is a Galois type correspondence between R-sub-Hopf algebras of H and subalgebras of A containing R.

Theorem [Chase, Sweedler Theorem 7.6]. If we define for an R-sub-Hopf algebra W of H,

$$Fix(W) = \{x \in A | \mu(w)(x) = \epsilon(w)x \ \forall w \in W\} = A^W$$

then the map

$$\{W \subseteq H \ sub-Hopf \ algebra\} \xrightarrow{Fix} \{E | R \subseteq E \subseteq A, \ E \ an \ R-subalgebra\}$$
 is injective and inclusion reversing.

The case when Fix is also *surjective* is of importance and will be discussed.

Examples

- L/K Galois extension of fields with G = Gal(L/K)
- then L/K is also Hopf Galois with Hopf algebra H = KG.
- $\mu: H \to End_K(L)$ given as expected:

$$\begin{split} h &= \sum a_i g_i \in H, \ x,y \in L \\ \mu(h)(x) &= \sum a_i g_i(x) \\ \mu(h)(xy) &= \sum a_i g_i(xy) = \sum a_i g_i(x) g_i(y) = \sum_{(h)} \mu(h_1)(x) \mu(h_2)(y) \end{split}$$

which comes from $\Delta(h) = \sum a_i(g_i \otimes g_i)$ as well as

$$\mu(h)(1) = \sum a_i g_i(1)$$

$$= \sum a_i 1$$

$$= \epsilon(h) 1$$

Since the elements of G are a K-basis for $End_K(L)$ then $L \otimes H \cong End_K(L)$

Hence, any extension which is Galois (in the usual sense) is Hopf Galois as well.

But what about field extensions which are not Galois in the usual sense?

Example

- $w = \sqrt[3]{2}$
- ullet $\mathbb{Q}(w)$ a separable but non-normal extension of \mathbb{Q}
- It is Hopf Galois for the \mathbb{Q} -Hopf algebra H exhibited below.

 $N = \langle \sigma \rangle$ cyclic of order 3 ζ a primitive cube root of unity Consider the group ring $\mathbb{Q}(\zeta, w)N$.

Define $\alpha_1 = \sigma + \sigma^2$ and $\alpha_2 = \zeta^2 \sigma + \zeta \sigma^2$ and let $H = \mathbb{Q}[\alpha_1, \alpha_2]$

If we (for the moment) stipulate that

$$\sigma(w) = \zeta w$$
$$\sigma^{2}(w) = \zeta^{2} w$$
$$\sigma(1) = 1$$

the action of H on $\mathbb{Q}(w)$ is then:

$$\alpha_1(w) = \zeta w + \zeta^2 w$$
 $\qquad \qquad \alpha_2(w) = \zeta^2(\zeta w) + \zeta(\zeta^2 w)$
 $= (\zeta + \zeta^2) w$ and $= w + w$
 $= -w$ $= 2w$

Note also that $\alpha_1(1) = 2$ and $\alpha_2(1) = 2$.

If we treat $\mathbb{Q}(\zeta, w)N$ as a $\mathbb{Q}(\zeta, w)$ -Hopf algebra then we can let the Hopf algebra structure on H be induced from that on $\mathbb{Q}(\zeta, w)N$, to wit:

$$\Delta(\sigma + \sigma^2) = (\sigma \otimes \sigma + \sigma^2 \otimes \sigma^2)$$
$$\epsilon(\sigma + \sigma^2) = 2$$
$$\lambda(\sigma + \sigma^2) = \sigma^2 + \sigma$$

Here, H measures $\mathbb{Q}(w)$ to itself, for example

$$\alpha_1(w \cdot w) = m(\sigma \otimes \sigma + \sigma^2 \otimes \sigma^2)(w \otimes w)$$

$$= m(\zeta w \otimes \zeta w + \zeta^2 w \otimes \zeta^2 w)$$

$$= \zeta^2 w^2 + \zeta w^2$$

$$= -w^2$$

Note: The action of H seems to be connected to the (ordinary Galois) extensions $\mathbb{Q}(\zeta, w)/\mathbb{Q}(\zeta)$ and $\mathbb{Q}(\zeta, w)/\mathbb{Q}$

Let's explore this a bit....

Behind the scenes in the above example (and in the theory as a whole) is some sort of faithfully flat descent.

Definition:

k a field

A a k-object of some sort (k-algebra, k-Hopf algebra etc.)

L an extension field of k.

Another such k-object B is called an <u>L-form</u> of A if $L \otimes B \cong L \otimes A$ as the corresponding L-objects.

Setup

L/k be a Galois extension with $\Gamma = Gal(L/k)$

S be a finite set

 $L^S = Map(S, L)$ the L-algebra of set maps from S to L

generated by $\{u_s|s\in S\}$ where $u_s(t)=\delta_{s,t}$ and $u_su_t=\delta_{s,t}u_s$.

A group N acts on L^S (by L-automorphisms) via permutations on S

This action is Galois (ala Galois theory of rings) or Hopf Galois (via the action of H = LN) iff N is a <u>regular</u> subgroup of B = Perm(S).

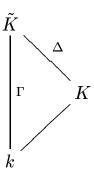
That is, N acts transitively and all point stabilizers are trivial.

Greither-Pareigis Theory

Greither and Pareigis give a characterization of Hopf Galois structures on separable field extensions which we outline here.

If K/k is a separable (but not necessarily normal) field extension where

• $\Gamma = Gal(\tilde{K}/k)$ and $\Delta = Gal(\tilde{K}/K)$ as diagrammed below:



Let

- $S = \Gamma/\Delta$ the set of left cosets of Δ in Γ
- B = Perm(S) (observe |S| = [K:k])

There is then an embedding $\Gamma \subseteq B$ where Γ acts on S by left translation.

Fact (1) There is a Γ equivariant, \tilde{K} -isomorphism, $\tilde{K} \otimes K \cong \tilde{K}^S$

Fact (2) If K/k is Hopf Galois for some k-Hopf algebra H then there is a unique regular subgroup $N \leq B = Perm(S)$ (arising due to H) for which $\tilde{K} \otimes H \cong \tilde{K}N$ (ie H is a \tilde{K} -form of kN)

For (2) the idea is this, if \tilde{K}/k is H-Galois, this corresponds to a map

$$H \otimes_k K \to K$$

If we base change up to \tilde{K} we get a map

$$(\tilde{K} \otimes_k H) \otimes_{\tilde{K}} (\tilde{K} \otimes_k K) \to (\tilde{K} \otimes_k K)$$

and by (1), $\tilde{K} \otimes K \cong \tilde{K}^S$ and so this is actually

$$(\tilde{K} \otimes H) \otimes \tilde{K}^S \to \tilde{K}^S$$

By faithful flatness, H is k-Hopf algebra iff $\tilde{K}\otimes H$ is a \tilde{K} -Hopf algebra.

Moreover, $\tilde{K} \otimes H$ is in fact $\tilde{K}N$ for some group N which acts regularly on S.

Why?

By Hopf Galois-ness, $K \otimes K \cong K \otimes H^*$ and so $\tilde{K}^S \cong \tilde{K} \otimes K \cong \tilde{K} \otimes H^*$ and so $\tilde{K} \otimes H^*$ has \tilde{K}^S as its underlying algebra.

A Hopf algebra structure on \tilde{K}^S must come from a group structure on S so S=N and as such N must be regular.

Why?

 $\Delta: \tilde{K}^S \to \tilde{K}^S \otimes \tilde{K}^S \cong \tilde{K}^{S \times S}$ corresponds to a map $m: S \times S \to S$ which is associative since Δ is co-associative, etc.

If N is a group then $(\tilde{K}^N)^*$ is $\tilde{K}N$.

As such the base changed action is actually:

$$\tilde{K}N\otimes \tilde{K}^S \to \tilde{K}^S$$

Given this, we have the following:

Theorem [Greither Pareigis 1987]. Let $N \subseteq B$ be a subgroup. The following are equivalent:

- (a) There is a k-Hopf algebra H and an H-Galois structure on K/k which induces $N \subseteq B$ where H is a \tilde{K} -form of kN
 - (b) N is regular on $S = \Gamma/\Delta$ and the subgroup $\Gamma \subset B$ normalizes N.

Observations:

- This theorem allows us to enumerate and classify H-Galois structures by determining the regular subgroups N of B = Perm(S) that are normalized by $\Gamma \subseteq B$.
- Unlike what occurs in ordinary Galois theory, a given extension can have several inequivalent Hopf Galois structures on it, where two H-Galois structures on K/k, corresponding to regular subgroups N and N' in B, are equivalent if there is a Γ isomorphism between them.
- In fact, one can have two Hopf algebras H and H' acting on K/k where H corresponds to N and H' to N' which give inequivalent Hopf Galois structures, even though N and N' may be isomorphic as abstract groups!

Almost Classical Extensions

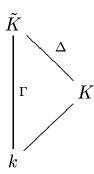
It is not necessary that a regular subgroup $N \subseteq B$ that is normalized by Γ be contained in Γ .

When $N \subseteq \Gamma$ the associated Hopf Galois structure on K/k satisfies a stronger version of the main theorem of Hopf Galois extensions.

Theorem - [Greither Pareigis 1987]. If K/k is almost classically Galois, then there is a Hopf algebra H such that K/k is H-Galois and the main theorem holds in its strong form.

That is, the map Fix is not only injective but is *surjective* as well.

Recall the setup,



where $S = \Gamma/\Delta$ and B = Perm(S)

In the almost classical case, a regular subgroup is N_*^{opp} where

$$N_*$$
 is a normal complement Δ in Γ (equivalently $N=Gal(\tilde{K}/E)$ where $\tilde{K}=E\cdot K=E\otimes K$)

 N_*^{opp} is the opposite subgroup to $N \leq B$

 N_* is regular by virtue of being a normal complement to Δ N_*^{opp} is regular iff N_* is regular.

In this case the Hopf algebra H is $(\tilde{K}N_*^{opp})^{\Gamma}$.

Observations

- Almost classical extensions very close to ordinary Galois extensions in terms of the one to one correspondence b/w sub Hopf-algebras and subfields of K.
- There is still the feature of the multiplicity of Hopf Galois structures that can be imposed on an extension
- For certain extensions, the only structures that arise are the almost classical ones.
- If L/K is Galois in the usual sense (with group G / Hopf algebra KG) one can sometimes find additional Hopf algebras which make L/K a Hopf Galois extension!.

The way that this theory is used is by rephrasing the condition

$$\Gamma \leq B$$
 normalizes $N \leq B$

It is, of course, equivalent to $\Gamma \leq Norm_B(N)$ but we can be go further.

Any two of the following implies the third:

- (1) |N| = |S|
- (2) N acts transitively
- (3) N acts fixed point freely

So if N acts regularly on S then it acts regularly on itself as well.

Hence we can identify

$$B = Perm(S) = Perm(N)$$

where N is embedded as $\lambda(N)$, the left regular representation of N.

So $Norm_B(N) = Norm_B(\lambda(N))$ which is an object known classically as Hol(N) the holomorph of N.

Fact: Aut(N) is (as a subgroup of Hol(N)) the set of all permutations in B which fix the identity of N and so there is a canonical isomorphism

$$Hol(N) \cong N \rtimes Aut(N)$$

So we handle the enumeration by looking at when (and if) the condition

$$\Gamma \leq Hol(N)$$

holds for abstract groups Γ and N.

Again, several N's can give distinct actions but be isomorphic as abstract groups.

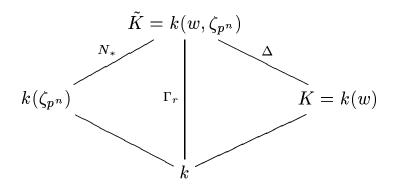
For example,

[K] 1998

- \bullet p an odd prime and n a positive integer
- k a field of characteristic zero
- K = k(w) with $w^{p^n} = a \in k$ where a is such that $[K:k] = p^n$
- r = the largest integer between 0 and n such that $K \cap k(\zeta_{p^r}) = k(\zeta_{p^r})$ where ζ_{p^r} denotes a primitive $p^r th$ root of unity
- K/k is separable, but not always normal
- It is H-Galois with H a \tilde{K} -Hopf algebra form of group ring(s) kN where \tilde{K} is the normal closure of K/k.
- If r < n then there are p^r Hopf Galois structures on K/k for which the associated group N is cyclic of order p^n .
- ullet Of these, $p^{min(r,n-r)}$ are almost classical and the rest are non almost classical.
- When r = n, there are p^{n-1} H-Galois structures for which $N \cong C_{p^n}$ of which only one is almost classical.
- In fact, these are the only structures possible.
- \bullet For this class of extensions, N must be cyclic.

Rough Sketch of Proof. key parameter r

The situation looks like this,



 $N_* = \langle \sigma \rangle$ is cyclic of order p^n

$$\sigma(w) = \zeta_{p^n} w$$

$$\Delta \cong Gal(k(\zeta_{p^n})/k)$$

 Δ isomorphic to a s.g. of $Aut(N_*) = \langle \delta \rangle$ where $\delta \sigma = \sigma^{\pi}$ with $\langle \pi \rangle = (\mathbb{Z}/p^n\mathbb{Z})^*$ In particular

$$\begin{cases} \Delta \cong \langle \delta^{p^{r-1}(p-1)} \rangle \text{ if } 1 \leq r \leq n \\ \Delta \cong \langle \delta^{dp^e} \rangle \text{ for } d < p-1, \ 0 \leq e \leq n-1 \text{ if } r = 0 \end{cases}$$

Identify Δ as this subgroup since $\Gamma_r = N_* \Delta \cong N_* \rtimes \Delta$.

If r=0, d=1, and e=0 then $\Delta \cong Aut(N_*)$ (and so $\Gamma \cong Hol(N_*)$)

If r = n then $k = k(\zeta_{p^n})$ and K/k is already a Galois extension whereby $\tilde{K} = K$, $\Delta = \{1\}$ and so we define $\Gamma_n = N_* = Gal(K/k)$.

Any Hopf Galois structure on K/k will correspond to a regular subgroup N of $B = Perm(\Gamma_r/\Delta) \cong S_{p^n}$ normalized by Γ_r and by the earlier remarks about regularity, we must have $|N| = [K : k] = p^n$.

Cases

N cyclic of order p^n (hence regular) and moreover $N=N^{opp}$ Any such N has the form $(\sigma^i, \delta^{p^k(p-1)})$ for $i \in (\mathbb{Z}/p^{n-1-k}\mathbb{Z})^*$ for $k=0\ldots n-1$

Almost classical structures?

Look for those $N \triangleleft \Gamma_r$.

If r = n, the extension is already Galois and so $\Gamma = N_*$ and so $N = N_*$

For $0 \le r \le n$, $(\sigma^i, \delta^{p^k(p-1)}) \triangleleft \Gamma_r$ iff

$$n \le k + (r+1)$$
$$k > r - 1$$

and the number of these is exactly $p^{\min(r,n-r)}$.

For the general case one is looking for $N_{\beta} \leq B$ normalized by $\Gamma_r \leq B$.

For N cyclic of order p^n , if $Aut(N) = \langle \delta \rangle$ then we can look at the p-subgroups of Aut(N), namely $\langle \delta^{p^{r-1}(p-1)} \rangle$ for r = 0..n - 1.

As such we can define the r-th lower holomorph of N, $Hol_r(N)$ as

$$N \rtimes \langle \delta^{p^{r-1}(p-1)} \rangle$$

This makes it easy to view Γ_r as $Hol_r(N_*)$

So we want to look for those $N_{\beta} \leq B$ such that

$$Hol_r(N_*) \leq Hol(N_\beta)$$

Main idea is to realize that $N_{\beta} = \beta N_* \beta^{-1}$ for some $\beta \in B$ since both N_* are cyclic of order p^n , hence conjugate in B.

As such

$$Hol_r(N_*) \le Hol(\beta N_* \beta^{-1})$$

and so

$$Hol_r(\beta^{-1}N_*\beta) \le Hol(N_*)$$

So we may look for such $\beta^{-1}N_*\beta$ in the subgroup lattice of $Hol(N_*)$.

For r < n there are precisely p^r such groups, for r = n there are p^{n-1} .

The fact that there are no more arises due the examination of when

$$\Gamma \leq Hol(N)$$

where N has order p^n .

In particular, we show that unless N is cyclic, the p-Sylow subgroup of Hol(N) has exponent strictly less than p^n .

As such, for $\Gamma = \Gamma_r$, each of which having the exponent of it's p-Sylow subgroup equalling p^n , rules out any N but cyclic of order p^n .

We can say something about uniqueness of Hopf Galois structures, in particular we have the following interesting result due to Byott.

Theorem - [Byott 1996]. If L/K is Galois with group G where |G| = n then L/K is Hopf Galois for a unique Hopf algebra if and only if n is Burnside number, that is $gcd(n, \phi(n)) = 1$ where ϕ is the Euler totient.

Examples, n = p, 2p, 3p, 5p, 17p, 257p $13p \text{ (for } p \not\equiv 1 \text{ } (mod 13) \text{ } p \geq 5)$ $3 \cdot 5 \cdot 17 \cdot 23 \cdot 53 \cdot 83 \cdot 257$