MA294 Lecture

Timothy Kohl

Boston University

January 18, 2024

We recall the definition of 'equivalence'.

Definition

An equivalence relation \sim on a set S is an association between pairs of elements of S that satisfies the following properties:

- $a \sim a$ for all $a \in S$ (reflexivity)
- $a \sim b$ implies $b \sim a$ (symmetry)
- $a \sim b$ and $b \sim c$ implies $a \sim c$ (transitivity)

The word 'association' may seem a bit nebulous so here is a more formal definition.

An equivalence relation \sim on a set S is a subset $R \subseteq S \times S$ such that

•
$$(a, a) \in R$$
 for all $a \in S$ (reflexivity)

- $(a, b) \in R$ implies $(b, a) \in R$ (symmetry)
- $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$ (transitivity)

and sometimes one writes aRb instead of $a \sim b$.

An equivalence relation gives rise to a partition of the set.

Definition

Given an equivalence relation \sim on a set S and $a \in S$, the equivalence class of a is the set

$$[a] = \{b \in S \mid a \sim b\}$$

i.e. the set of all those elements equivalent to a.

Note: $[a] \subseteq S$ and that $a \in [a]$ of course.

FACTS:

Proposition

If
$$a_1 \sim a_2$$
 then $[a_1] = [a_2]$ and vice-versa.

Proof.

Well, if $a_1 \sim a_2$ then if $b \sim a_1$ then, by transitivity $b \sim a_2$ so $[a_1] \subseteq [a_2]$.

Since $a_1 \sim a_2$ implies $a_2 \sim a_1$ then if $b \sim a_2$ (i.e. $b \in [a_2]$) then $b \sim a_1$ (again by transitivity).

So $b \in [a_1]$ and therefore $[a_2] \subseteq [a_1]$ so $[a_1] = [a_2]$.

If $[a_1] = [a_2]$ then, since $a_1 \in [a_1]$ we have that $a_1 \in [a_2]$ so $a_1 \sim a_2$.

Proposition

For
$$a_1, a_2 \in S$$
, either $[a_1] = [a_2]$ or $[a_1] \cap [a_2] = \emptyset$.

Proof.

Suppose $[a_1] \cap [a_2] \neq \emptyset$ then if $x \in [a_1] \cap [a_2]$ we have $x \sim a_1$ and $x \sim a_2$.

Thus $a_1 \sim x$ and $x \sim a_2$ so, by transitivity, $a_1 \sim a_2$ which, by the previous fact, implies that $[a_1] = [a_2]$.

Proposition

If \sim is an equivalence relation defined on a set S then S is the union of the distinct equivalence classes with respect to \sim .

Proof.

The basic point is that if $a \in S$ then $a \in [a]$ so every element of S belongs to an equivalence class.

And the only other observation to make is that, by the above facts, two distinct elements of S give rise to equivalence classes that are either identical, or disjoint, as sets.

Note, if $a \sim b$ for all $a, b \in S$ then there is only one equivalence class, namely [a] = S for any $a \in S$.

On the other hand, one can define $a \sim b$ only if a = b, in which case each $a \in S$ determines its own equivalence class, namely $[a] = \{a\}$, the set consisting of a by itself.

The principle example of an equivalence relation is that which gives rise to what is known as *modular arithmetic*.

Definition

Let $S = \mathbb{Z}$ (the integers) and pick m > 1 a fixed integer (called the **modulus**) and define an equivalence relation \equiv on \mathbb{Z} as follows:

 $a \equiv b \pmod{m}$

if *m* divides a - b, written m|a - b.

Equivalently, a - b = km for some integer k. (k can be positive or negative!)

We also use the terminology 'a is congruent to $b \mod m'$.

Proposition

 $a \equiv b \pmod{m}$ is an equivalence relation on \mathbb{Z}

Proof.

If $a \in \mathbb{Z}$ then $a \equiv a \pmod{m}$ since $a - a = 0 = 0 \cdot m$. (i.e. k = 0)

If $a \equiv b \pmod{m}$ then a - b = km, so the question is whether $b \equiv a$, but this is indeed the case since b - a = -(a - b) = -km = (-k)m so b - a is a multiple of m.

If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a - b = k_1 m$ for some k_1 and $b - c = k_2 m$ for some k_2 and so $a - c = (a - b) + (b - c) = k_1 m + k_2 m = (k_1 + k_2) m$ and so $a \equiv c \pmod{m}$. Examples:

- $5 \equiv 2 \pmod{3}$
- $-1 \equiv 5 \pmod{6}$
- $2 \equiv 0 \pmod{2}$

•
$$-2 \equiv -5 \pmod{3}$$

Note, we don't usually let m = 1 as then $a \equiv b \pmod{1}$ would hold for all integers a, b which wouldn't be terribly interesting.

The equivalence classes of \mathbb{Z} with respect to congruence mod m can be understood by means of the Division Algorithm.

Proposition

(The Division Algorithm) Given an integer a and divisor m, there exists unique integers q, r such that

a = qm + r

where $0 \le r < m$. (q=quotient, r=remainder)

Example: a = 23, m = 5 yields $23 = 4 \cdot 5 + 3$ and observe, as a consequence, that $23 \equiv 3 \pmod{5}$ which is no accident since a = qm + r implies $a \equiv r \pmod{m}$.

Back to m = 3, consider the equivalence classes under $\equiv \mod 3$.

The reason for this is that if m = 3, given $a \in \mathbb{Z}$ one has

$$a = 3 \cdot q + r$$

where $0 \le r < 3$, i.e. r = 0, 1, 2.

That is, dividing a number by 3 leaves a particular (unique) remainder.

The key point to observe is that, for $a \in \mathbb{Z}$, and a fixed modulus m > 1 then $a \equiv r \pmod{m}$ for exactly one $r \in \{0, 1, \dots, m-1\}$, i.e. $a \in [r]$ uniquely.

Example: m = 2

$$a \equiv 0 \pmod{2}$$
 only if $2|a$, i.e. *a* is even
 $a \equiv 1 \pmod{2}$ only if $a = 2k + 1$, i.e. *a* is odd

So $\mathbb{Z} = [0] \cup [1]$ which is the natural division of integers into even versus odd numbers.

Note of course that for a given *m* one may have $[a_1] = [a_2]$ for distinct a_1, a_2 .

i.e. Under \equiv mod 2 for example

$$[0] = [2] = [-2] = [4] = [-4] = \dots \text{ etc.}$$

$$[1] = [3] = [-1] = [5] = [-3] = \dots \text{ etc.}$$

But, again, given m > 1, a given $a \in \mathbb{Z}$ lies in exactly one [r] for $0 \le r \le m - 1$.

For example, for m = 10, one has $a = d_n d_{n-1} \cdots d_1 d_0$ (where the d_i are the digits of a) namely

$$a = d_n \cdot 10^n + d_{n-1} \cdot 10^{n-1} + \dots + d_1 \cdot 10 + d_0$$

yields the fact that $a \equiv d_0 \pmod{10}$.

For a given modulus m we can utilize the properties of congruence, to define an 'arithmetic' of congruences, based on the following properties of \equiv .

Theorem

Given a fixed modulus m > 1, if $a_1 \equiv a_2 \pmod{m}$ and $b_1 \equiv b_2 \pmod{m}$ then (i) $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ (ii) $a_1b_1 \equiv a_2b_2 \pmod{m}$ namely that addition and multiplication are 'compatible' with \equiv .

Proof.

If $a_1 - a_2 = km$ and $b_1 - b_2 = lm$ then

$$(a_1 - a_2) + (b_1 - b_2) = (k + l)m$$

 \downarrow
 $(a_1 + b_1) - (a_2 + b_2) = (k + l)m$
 \downarrow
 $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$

Similarly, $a_1b_1 = (a_2 + km)(b_2 + lm) = a_2b_2 + a_2lm + b_2km + kmlm$ implies that $a_1b_1 \equiv a_2b_2$.

Another consequence of this is the following.

Proposition

If $a \equiv b \pmod{m}$ then $a^n \equiv b \pmod{m}$

 $a^n \equiv b^n \pmod{m}$

for any $n \geq 1$.

Proof.

This is basically an application of the previous theorem, in particular $a \equiv b \pmod{m}$ and $a \equiv b \pmod{m}$ (multiplied on both sides) yields $a \cdot a \equiv b \cdot b \pmod{m}$, namely $a^2 \equiv b^2 \pmod{m}$ and we can repeat this as often as we like for larger exponents.

Here is a neat application of this fact. Prove that the last digit of 2^{30} is 4.

The basic bit of information we need is that digit ' $d' \in \{0, ..., 9\}$ such that $2^{30} \equiv d \pmod{10}$.

We note that $2^2 = 4$ so $2^2 \equiv 4 \pmod{10}$ which implies that $(2^2)^2 \equiv 4^2 \pmod{10}$, and since $4^2 = 16$, and $16 \equiv 6 \pmod{10}$ then $2^4 \equiv 6 \pmod{10}$ and so $2^5 \equiv 12 \pmod{10}$ where, of course $12 \equiv 2 \pmod{10}$, and so

 $2^5 \equiv 2 \pmod{10}$

which implies $(2^5)^6 \equiv 2^6 \pmod{10}$, that is $2^{30} \equiv 2^6 \pmod{10}$ and since $2^6 = 64$ then $2^6 \equiv 4 \pmod{10}$ and therefore $2^{30} \equiv 4 \pmod{10}$.

That is, the last digit is 4, and indeed $2^{30} = 1,073,741,824$. **Exercise:** Repeat this for the number 2^{2023} .

Timothy Kohl (Boston University)