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Modular Arithmetic

We recall the definition of ’equivalence’.

Definition

An equivalence relation ∼ on a set S is an association between pairs of
elements of S that satisfies the following properties:

a ∼ a for all a ∈ S (reflexivity)

a ∼ b implies b ∼ a (symmetry)

a ∼ b and b ∼ c implies a ∼ c (transitivity)

The word ’association’ may seem a bit nebulous so here is a more formal
definition.
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An equivalence relation ∼ on a set S is a subset R ⊆ S × S such that

(a, a) ∈ R for all a ∈ S (reflexivity)

(a, b) ∈ R implies (b, a) ∈ R (symmetry)

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R (transitivity)

and sometimes one writes aRb instead of a ∼ b.

An equivalence relation gives rise to a partition of the set.
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Definition

Given an equivalence relation ∼ on a set S and a ∈ S , the
equivalence class of a is the set

[a] = {b ∈ S |a ∼ b}

i.e. the set of all those elements equivalent to a.

Note: [a] ⊆ S and that a ∈ [a] of course.
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FACTS:

Proposition

If a1 ∼ a2 then [a1] = [a2] and vice-versa.

Proof.

Well, if a1 ∼ a2 then if b ∼ a1 then, by transitivity b ∼ a2 so [a1] ⊆ [a2].

Since a1 ∼ a2 implies a2 ∼ a1 then if b ∼ a2 (i.e. b ∈ [a2]) then b ∼ a1
(again by transitivity).

So b ∈ [a1] and therefore [a2] ⊆ [a1] so [a1] = [a2].

If [a1] = [a2] then, since a1 ∈ [a1] we have that a1 ∈ [a2] so a1 ∼ a2.
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Proposition

For a1, a2 ∈ S, either [a1] = [a2] or [a1] ∩ [a2] = ∅.

Proof.

Suppose [a1] ∩ [a2] 6= ∅ then if x ∈ [a1] ∩ [a2] we have x ∼ a1 and x ∼ a2.

Thus a1 ∼ x and x ∼ a2 so, by transitivity, a1 ∼ a2 which, by the previous
fact, implies that [a1] = [a2].
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Proposition

If ∼ is an equivalence relation defined on a set S then S is the union of
the distinct equivalence classes with respect to ∼.

Proof.

The basic point is that if a ∈ S then a ∈ [a] so every element of S belongs
to an equivalence class.

And the only other observation to make is that, by the above facts, two
distinct elements of S give rise to equivalence classes that are either
identical, or disjoint, as sets.

Note, if a ∼ b for all a, b ∈ S then there is only one equivalence class,
namely [a] = S for any a ∈ S .

On the other hand, one can define a ∼ b only if a = b, in which case each
a ∈ S determines its own equivalence class, namely [a] = {a}, the set
consisting of a by itself.
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Modular Arithmetic

The principle example of an equivalence relation is that which gives rise to
what is known as modular arithmetic.

Definition

Let S = Z (the integers) and pick m > 1 a fixed integer (called the
modulus) and define an equivalence relation ≡ on Z as follows:

a ≡ b (mod m)

if m divides a− b, written m|a − b.

Equivalently, a − b = km for some integer k . (k can be positive or
negative!)

We also use the terminology ’a is congruent to b mod m’.
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Proposition

a ≡ b (mod m) is an equivalence relation on Z

Proof.

If a ∈ Z then a ≡ a (mod m) since a− a = 0 = 0 ·m. (i.e. k = 0)

If a ≡ b (mod m) then a− b = km, so the question is whether b ≡ a, but
this is indeed the case since b − a = −(a− b) = −km = (−k)m so b − a
is a multiple of m.

If a ≡ b (mod m) and b ≡ c (mod m) then a− b = k1m for some k1 and
b − c = k2m for some k2 and so
a − c = (a − b) + (b − c) = k1m + k2m = (k1 + k2)m and so
a ≡ c (mod m).
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Examples:

5 ≡ 2 (mod 3)

−1 ≡ 5 (mod 6)

2 ≡ 0 (mod 2)

−2 ≡ −5 (mod 3)

Note, we don’t usually let m = 1 as then a ≡ b (mod 1) would hold for all
integers a, b which wouldn’t be terribly interesting.
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The equivalence classes of Z with respect to congruence mod m can be
understood by means of the Division Algorithm.

Proposition

(The Division Algorithm) Given an integer a and divisor m, there exists
unique integers q, r such that

a = qm + r

where 0 ≤ r < m. (q=quotient, r=remainder)

Example: a = 23, m = 5 yields 23 = 4 · 5 + 3 and observe, as a
consequence, that 23 ≡ 3 (mod 5) which is no accident since a = qm + r
implies a ≡ r (mod m).
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Back to m = 3, consider the equivalence classes under ≡ mod 3.

[0]={. . . ,-9,-6,-3,0,3,6,9,. . . }

[1]={. . . ,-8,-5,-2,1,4,7,10,. . . }

[2]={. . . ,-7,-4,-1,2,5,8,11,. . . }

The reason for this is that if m = 3, given a ∈ Z one has

a = 3 · q + r

where 0 ≤ r < 3, i.e. r = 0, 1, 2.

That is, dividing a number by 3 leaves a particular (unique) remainder.
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The key point to observe is that, for a ∈ Z, and a fixed modulus m > 1
then a ≡ r (mod m) for exactly one r ∈ {0, 1, . . . ,m − 1}, i.e. a ∈ [r ]
uniquely.

Example: m = 2

a ≡ 0 (mod 2) only if 2|a, i.e. a is even

a ≡ 1 (mod 2) only if a = 2k + 1, i.e. a is odd

So Z = [0] ∪ [1] which is the natural division of integers into even versus
odd numbers.
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Note of course that for a given m one may have [a1] = [a2] for distinct
a1,a2.
i.e. Under ≡ mod 2 for example

[0] = [2] = [−2] = [4] = [−4] = . . . etc.

[1] = [3] = [−1] = [5] = [−3] = . . . etc.

But, again, given m > 1, a given a ∈ Z lies in exactly one [r ] for
0 ≤ r ≤ m − 1.

For example, for m = 10, one has a = dndn−1 · · · d1d0 (where the di are
the digits of a) namely

a = dn · 10
n + dn−1 · 10

n−1 + · · ·+ d1 · 10 + d0

yields the fact that a ≡ d0 (mod 10).
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For a given modulus m we can utilize the properties of congruence, to
define an ’arithmetic’ of congruences, based on the following properties of
≡.

Theorem

Given a fixed modulus m > 1, if a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m)
then
(i) a1 + b1 ≡ a2 + b2 (mod m)
(ii) a1b1 ≡ a2b2 (mod m)
namely that addition and multiplication are ’compatible’ with ≡.
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Proof.

If a1 − a2 = km and b1 − b2 = lm then

(a1 − a2) + (b1 − b2) = (k + l)m

↓

(a1 + b1)− (a2 + b2) = (k + l)m

↓

a1 + b1 ≡ a2 + b2 (mod m)

Similarly, a1b1 = (a2 + km)(b2 + lm) = a2b2 + a2lm + b2km + kmlm
implies that a1b1 ≡ a2b2.

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 16 / 18



Another consequence of this is the following.

Proposition

If a ≡ b (mod m) then
an ≡ bn (mod m)

for any n ≥ 1.

Proof.

This is basically an application of the previous theorem, in particular
a ≡ b (mod m) and a ≡ b (mod m) (multiplied on both sides) yields
a · a ≡ b · b (mod m), namely a2 ≡ b2 (mod m) and we can repeat this as
often as we like for larger exponents.

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 17 / 18



Here is a neat application of this fact.
Prove that the last digit of 230 is 4.

The basic bit of information we need is that digit ’d ′ ∈ {0, . . . , 9} such
that 230 ≡ d (mod 10).

We note that 22 = 4 so 22 ≡ 4 (mod 10) which implies that
(22)2 ≡ 42 (mod 10), and since 42 = 16, and 16 ≡ 6 (mod 10) then
24 ≡ 6 (mod 10) and so 25 ≡ 12 (mod 10) where, of course
12 ≡ 2 (mod 10), and so

25 ≡ 2 (mod 10)

which implies (25)6 ≡ 26 (mod 10), that is 230 ≡ 26 (mod 10) and since
26 = 64 then 26 ≡ 4 (mod 10) and therefore 230 ≡ 4 (mod 10).

That is, the last digit is 4, and indeed 230 = 1, 073, 741, 824.
Exercise: Repeat this for the number 22023.
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