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Modular Arithmetic

We recall the definition of 'equivalence’.

Definition
An equivalence relation ~ on a set S is an association between pairs of
elements of S that satisfies the following properties:

@ a~ aforall ae S (reflexivity)

@ a~ bimplies b ~ a (symmetry)

@ a~ band b~ cimplies a ~ c (transitivity)

The word 'association’ may seem a bit nebulous so here is a more formal
definition.
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An equivalence relation ~ on a set S is a subset R C S x S such that
@ (a,a) € Rfor all a € S (reflexivity)
@ (a,b) € R implies (b,a) € R (symmetry)
@ (a,b) € R and (b, c) € R implies (a, c) € R (transitivity)

and sometimes one writes aRb instead of a ~ b.

An equivalence relation gives rise to a partition of the set.
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Definition

Given an equivalence relation ~ on a set S and a € S, the
equivalence class of a is the set

[a] ={be S |a~ b}

i.e. the set of all those elements equivalent to a.

Note: [a] C S and that a € [a] of course.
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FACTS:

Proposition
If ay ~ ay then [a1] = [a2] and vice-versa.

Proof.
Well, if a; ~ ap then if b ~ a; then, by transitivity b ~ ay so [a1] C [a2].

Since a1 ~ ap implies ap ~ a; then if b~ ay (i.e. b € [az]) then b ~ a;
(again by transitivity).

So b € [a;1] and therefore [a2] C [a1] so [a1] = [a2].

If [a1] = [az2] then, since a; € [a1] we have that a1 € [a] so a1 ~ ap. [

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 5/18



Proposition
For ai,ay € S, either [a1] = [a2] or [a1] N [a2] = 0.

Suppose [a1] N [a2] # O then if x € [a1] N [a2] we have x ~ a1 and x ~ a.

Thus a1 ~ x and x ~ aj so, by transitivity, a; ~ a» which, by the previous
fact, implies that [a1] = [a2]. O

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 6 /18



If ~ is an equivalence relation defined on a set S then S is the union of
the distinct equivalence classes with respect to ~.

| A\

Proof.

The basic point is that if a € S then a € [a] so every element of S belongs
to an equivalence class.

And the only other observation to make is that, by the above facts, two
distinct elements of S give rise to equivalence classes that are either
identical, or disjoint, as sets. O

v

Note, if a ~ b for all a,b € S then there is only one equivalence class,
namely [a] = S for any a € S.

On the other hand, one can define a ~ b only if a = b, in which case each
a € S determines its own equivalence class, namely [a] = {a}, the set
consisting of a by itself.
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Modular Arithmetic

The principle example of an equivalence relation is that which gives rise to
what is known as modular arithmetic.

Definition

Let S = Z (the integers) and pick m > 1 a fixed integer (called the
modulus) and define an equivalence relation = on Z as follows:

a=b (mod m)

if m divides a — b, written m|a — b.

Equivalently, a — b = km for some integer k. (k can be positive or
negative!)

We also use the terminology 'a is congruent to b mod m’.
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Proposition

a= b (mod m) is an equivalence relation on Z

Proof.
If a € Z then a= a (mod m)sincca—a=0=0-m. (i.e. k=0)

If a= b (mod m) then a— b = km, so the question is whether b = a, but
this is indeed the case since b—a= —(a—b) = —km=(—k)mso b—a
is a multiple of m.

If a= b (mod m) and b= c (mod m) then a — b = kym for some k; and
b — ¢ = kom for some ky and so
a—c=(a—b)+(b—c)=kim+ kam = (ki + ko)m and so

a=c (mod m). O

A\,

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 9 /18



Examples:
@ 5=2 (mod 3)

@ —1=5 (mod 6)
@ 2=0 (mod 2)
e —2= -5 (mod 3)

Note, we don't usually let m =1 as then a = b (mod 1) would hold for all
integers a, b which wouldn't be terribly interesting.
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The equivalence classes of Z with respect to congruence mod m can be
understood by means of the Division Algorithm.

Proposition

(The Division Algorithm) Given an integer a and divisor m, there exists
unique integers q, r such that

a=qgm-+r

where 0 < r < m. (q=quotient, r=remainder)

Example: a =23, m =5 yields 23 =4 -5 4 3 and observe, as a
consequence, that 23 = 3 (mod 5) which is no accident since a = gm + r
implies a = r (mod m).

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 11 /18



Back to m = 3, consider the equivalence classes under = mod 3.

o [0]={...,-9,6,-3,0,3,6,9,. ..}
o [1]={...-8-5-214,710, ..}
o 2]={...-7-4-125811, .}

The reason for this is that if m = 3, given a € Z one has
a=3-q+r

where 0 < r < 3,ie. r=0,1,2.

That is, dividing a number by 3 leaves a particular (unique) remainder.
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The key point to observe is that, for a € Z, and a fixed modulus m > 1
then a = r (mod m) for exactly one r € {0,1,...,m—1}, i.e. a € [r]
uniquely.

Example: m=2

a=0 (mod 2) only if 2|a, i.e. ais even
a=1(mod?2)onlyifa=2k+1, ie aisodd

So Z = [0] U [1] which is the natural division of integers into even versus
odd numbers.
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Note of course that for a given m one may have [a;] = [a;] for distinct
di,dar.
i.e. Under = mod 2 for example

0] =[2] =[-2]=[4] = [-4] = ... etc.
=pBl=[-1=[5=[-3=... et

But, again, given m > 1, a given a € Z lies in exactly one [r] for
0<r<m-1.

For example, for m = 10, one has a = d,d,_1 - - - didy (where the d; are
the digits of a) namely

a=d, 10"+ d,_1-10"" 1 + -+ d; - 10 + dp

yields the fact that a = dy (mod 10).

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 14 / 18



For a given modulus m we can utilize the properties of congruence, to
define an 'arithmetic’ of congruences, based on the following properties of

Given a fixed modulus m > 1, if a; = ap (mod m) and by = by (mod m)
then

(i) a1 + b1 = a2 + by (mod m)

(i) a1by = axby (mod m)

namely that addition and multiplication are ‘compatible’ with =.

Timothy Kohl (Boston University) MA294 Lecture January 18, 2024 15 /18



Proof.

If a1 — a» = km and b; — b = Im then

(31 = 32) + (bl = bg) = (k + l)m
1
(31 aF bl) = (32 + bg) = (k + l)m
1
a1 + b1 = ax + by (mod m)

Similarly, a1b; = (a2 + km)(ba + Im) = axby + axlm + bykm + kmim
implies that a;b; = axbs. 1

4
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Another consequence of this is the following.

Proposition
If a= b (mod m) then
a" = b" (mod m)

for any n > 1.

| \

Proof.

This is basically an application of the previous theorem, in particular
a= b (mod m) and a= b (mod m) (multiplied on both sides) yields
a-a=b-b (mod m), namely a®> = b> (mod m) and we can repeat this as
often as we like for larger exponents. O

v
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Here is a neat application of this fact.
Prove that the last digit of 230 is 4.

The basic bit of information we need is that digit 'd’ € {0,...,9} such
that 230 = d (mod 10).

We note that 22 = 4 so 22 = 4 (mod 10) which implies that

(22)2 = 42 (mod 10), and since 42 = 16, and 16 = 6 (mod 10) then
2* =6 (mod 10) and so 2° = 12 (mod 10) where, of course

12 = 2 (mod 10), and so

25 = 2 (mod 10)

which implies (2°)° = 26 (mod 10), that is 23 = 2° (mod 10) and since

2% = 64 then 2° = 4 (mod 10) and therefore 230 = 4 (mod 10).

That is, the last digit is 4, and indeed 23° = 1,073, 741, 824.
Exercise: Repeat this for the number 22023
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