MA294 Lecture

Timothy Kohl

Boston University

January 18, 2024

Modular Arithmetic

We recall the definition of 'equivalence'.

Definition

An equivalence relation \sim on a set S is an association between pairs of elements of S that satisfies the following properties:

- $a \sim a$ for all $a \in S$ (reflexivity)
- $a \sim b$ implies $b \sim a$ (symmetry)
- $a \sim b$ and $b \sim c$ implies $a \sim c$ (transitivity)

The word 'association' may seem a bit nebulous so here is a more formal definition.

An equivalence relation \sim on a set S is a subset $R \subseteq S \times S$ such that

- $(a, a) \in R$ for all $a \in S$ (reflexivity)
- $(a, b) \in R$ implies $(b, a) \in R$ (symmetry)
- $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ (transitivity) and sometimes one writes $a R b$ instead of $a \sim b$.

An equivalence relation gives rise to a partition of the set.

Definition

Given an equivalence relation \sim on a set S and $a \in S$, the equivalence class of a is the set

$$
[a]=\{b \in S \mid a \sim b\}
$$

i.e. the set of all those elements equivalent to a.

Note: $[a] \subseteq S$ and that $a \in[a]$ of course.

FACTS:

Proposition

If $a_{1} \sim a_{2}$ then $\left[a_{1}\right]=\left[a_{2}\right]$ and vice-versa.

Proof.

Well, if $a_{1} \sim a_{2}$ then if $b \sim a_{1}$ then, by transitivity $b \sim a_{2}$ so $\left[a_{1}\right] \subseteq\left[a_{2}\right]$.

Since $a_{1} \sim a_{2}$ implies $a_{2} \sim a_{1}$ then if $b \sim a_{2}$ (i.e. $b \in\left[a_{2}\right]$) then $b \sim a_{1}$ (again by transitivity).

So $b \in\left[a_{1}\right]$ and therefore $\left[a_{2}\right] \subseteq\left[a_{1}\right]$ so $\left[a_{1}\right]=\left[a_{2}\right]$.

If $\left[a_{1}\right]=\left[a_{2}\right]$ then, since $a_{1} \in\left[a_{1}\right]$ we have that $a_{1} \in\left[a_{2}\right]$ so $a_{1} \sim a_{2}$.

Proposition

For $a_{1}, a_{2} \in S$, either $\left[a_{1}\right]=\left[a_{2}\right]$ or $\left[a_{1}\right] \cap\left[a_{2}\right]=\emptyset$.

Proof.

Suppose $\left[a_{1}\right] \cap\left[a_{2}\right] \neq \emptyset$ then if $x \in\left[a_{1}\right] \cap\left[a_{2}\right]$ we have $x \sim a_{1}$ and $x \sim a_{2}$.

Thus $a_{1} \sim x$ and $x \sim a_{2}$ so, by transitivity, $a_{1} \sim a_{2}$ which, by the previous fact, implies that $\left[a_{1}\right]=\left[a_{2}\right]$.

Proposition

If \sim is an equivalence relation defined on a set S then S is the union of the distinct equivalence classes with respect to \sim.

Proof.

The basic point is that if $a \in S$ then $a \in[a]$ so every element of S belongs to an equivalence class.

And the only other observation to make is that, by the above facts, two distinct elements of S give rise to equivalence classes that are either identical, or disjoint, as sets.

Note, if $a \sim b$ for all $a, b \in S$ then there is only one equivalence class, namely $[a]=S$ for any $a \in S$.

On the other hand, one can define $a \sim b$ only if $a=b$, in which case each $a \in S$ determines its own equivalence class, namely $[a]=\{a\}$, the set consisting of a by itself.

Modular Arithmetic

The principle example of an equivalence relation is that which gives rise to what is known as modular arithmetic.

Definition

Let $S=\mathbb{Z}$ (the integers) and pick $m>1$ a fixed integer (called the modulus) and define an equivalence relation \equiv on \mathbb{Z} as follows:

$$
a \equiv b(\bmod m)
$$

if m divides $a-b$, written $m \mid a-b$.
Equivalently, $a-b=k m$ for some integer k. (k can be positive or negative!)

We also use the terminology ' a is congruent to $b \bmod m$ '.

Proposition

$a \equiv b(\bmod m)$ is an equivalence relation on \mathbb{Z}

Proof.

If $a \in \mathbb{Z}$ then $a \equiv a(\bmod m)$ since $a-a=0=0 \cdot m$. (i.e. $k=0)$

If $a \equiv b(\bmod m)$ then $a-b=k m$, so the question is whether $b \equiv a$, but this is indeed the case since $b-a=-(a-b)=-k m=(-k) m$ so $b-a$ is a multiple of m.

If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $a-b=k_{1} m$ for some k_{1} and $b-c=k_{2} m$ for some k_{2} and so
$a-c=(a-b)+(b-c)=k_{1} m+k_{2} m=\left(k_{1}+k_{2}\right) m$ and so
$a \equiv c(\bmod m)$.

Examples:

- $5 \equiv 2(\bmod 3)$
- $-1 \equiv 5(\bmod 6)$
- $2 \equiv 0(\bmod 2)$
- $-2 \equiv-5(\bmod 3)$

Note, we don't usually let $m=1$ as then $a \equiv b(\bmod 1)$ would hold for all integers a, b which wouldn't be terribly interesting.

The equivalence classes of \mathbb{Z} with respect to congruence $\bmod m$ can be understood by means of the Division Algorithm.

Proposition

(The Division Algorithm) Given an integer a and divisor m, there exists unique integers q, r such that

$$
a=q m+r
$$

where $0 \leq r<m . \quad(q=q u o t i e n t, r=r e m a i n d e r)$

Example: $a=23, m=5$ yields $23=4 \cdot 5+3$ and observe, as a consequence, that $23 \equiv 3(\bmod 5)$ which is no accident since $a=q m+r$ implies $a \equiv r(\bmod m)$.

Back to $m=3$, consider the equivalence classes under $\equiv \bmod 3$.

- $[0]=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$
- $[1]=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$
- $[2]=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}$

The reason for this is that if $m=3$, given $a \in \mathbb{Z}$ one has

$$
a=3 \cdot q+r
$$

where $0 \leq r<3$, i.e. $r=0,1,2$.

That is, dividing a number by 3 leaves a particular (unique) remainder.

The key point to observe is that, for $a \in \mathbb{Z}$, and a fixed modulus $m>1$ then $a \equiv r(\bmod m)$ for exactly one $r \in\{0,1, \ldots, m-1\}$, i.e. $a \in[r]$ uniquely.

Example: $m=2$

$$
\begin{aligned}
& a \equiv 0(\bmod 2) \text { only if } 2 \mid a, \text { i.e. } a \text { is even } \\
& a \equiv 1(\bmod 2) \text { only if } a=2 k+1 \text {, i.e. } a \text { is odd }
\end{aligned}
$$

So $\mathbb{Z}=[0] \cup[1]$ which is the natural division of integers into even versus odd numbers.

Note of course that for a given m one may have $\left[a_{1}\right]=\left[a_{2}\right]$ for distinct a_{1}, a_{2}.
i.e. Under $\equiv \bmod 2$ for example

$$
\begin{aligned}
& {[0]=[2]=[-2]=[4]=[-4]=\ldots \text { etc. }} \\
& {[1]=[3]=[-1]=[5]=[-3]=\ldots \text { etc. }}
\end{aligned}
$$

But, again, given $m>1$, a given $a \in \mathbb{Z}$ lies in exactly one [r] for $0 \leq r \leq m-1$.

For example, for $m=10$, one has $a=d_{n} d_{n-1} \cdots d_{1} d_{0}$ (where the d_{i} are the digits of a) namely

$$
a=d_{n} \cdot 10^{n}+d_{n-1} \cdot 10^{n-1}+\cdots+d_{1} \cdot 10+d_{0}
$$

yields the fact that $a \equiv d_{0}(\bmod 10)$.

For a given modulus m we can utilize the properties of congruence, to define an 'arithmetic' of congruences, based on the following properties of三.

Theorem
Given a fixed modulus $m>1$, if $a_{1} \equiv a_{2}(\bmod m)$ and $b_{1} \equiv b_{2}(\bmod m)$ then
(i) $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod m)$
(ii) $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod m)$
namely that addition and multiplication are 'compatible' with \equiv.

Proof.

If $a_{1}-a_{2}=k m$ and $b_{1}-b_{2}=I m$ then

$$
\begin{aligned}
\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) & =(k+l) m \\
& \downarrow \\
\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right) & =(k+l) m \\
& \downarrow \\
a_{1}+b_{1} & \equiv a_{2}+b_{2}(\bmod m)
\end{aligned}
$$

Similarly, $a_{1} b_{1}=\left(a_{2}+k m\right)\left(b_{2}+I m\right)=a_{2} b_{2}+a_{2} / m+b_{2} k m+k m / m$ implies that $a_{1} b_{1} \equiv a_{2} b_{2}$.

Another consequence of this is the following.

Proposition

If $a \equiv b(\bmod m)$ then

$$
a^{n} \equiv b^{n}(\bmod m)
$$

for any $n \geq 1$.

Proof.

This is basically an application of the previous theorem, in particular $a \equiv b(\bmod m)$ and $a \equiv b(\bmod m)$ (multiplied on both sides) yields $a \cdot a \equiv b \cdot b(\bmod m)$, namely $a^{2} \equiv b^{2}(\bmod m)$ and we can repeat this as often as we like for larger exponents.

Here is a neat application of this fact.
Prove that the last digit of 2^{30} is 4 .

The basic bit of information we need is that digit ' $d^{\prime} \in\{0, \ldots, 9\}$ such that $2^{30} \equiv d(\bmod 10)$.

We note that $2^{2}=4$ so $2^{2} \equiv 4(\bmod 10)$ which implies that $\left(2^{2}\right)^{2} \equiv 4^{2}(\bmod 10)$, and since $4^{2}=16$, and $16 \equiv 6(\bmod 10)$ then $2^{4} \equiv 6(\bmod 10)$ and so $2^{5} \equiv 12(\bmod 10)$ where, of course $12 \equiv 2(\bmod 10)$, and so

$$
2^{5} \equiv 2(\bmod 10)
$$

which implies $\left(2^{5}\right)^{6} \equiv 2^{6}(\bmod 10)$, that is $2^{30} \equiv 2^{6}(\bmod 10)$ and since $2^{6}=64$ then $2^{6} \equiv 4(\bmod 10)$ and therefore $2^{30} \equiv 4(\bmod 10)$.

That is, the last digit is 4 , and indeed $2^{30}=1,073,741,824$.
Exercise: Repeat this for the number 2^{2023}.

