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Zm the integers mod m - “Z mod m”

Recall that for a given modulus m > 1 that any integer a is congruent to
exactly one r ∈ {0, . . . ,m − 1} because, by the division algorithm

a = q ·m + r

for unique q, r , where r ∈ {0, 1, . . . ,m − 1}.

With this and the arithmetic properties of ≡ we just proved, one can define
a system of numbers that is based on the integers Z but is finite in size.
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Definition

The set of integers mod m denoted Zm is the set of distinct equivalence
classes

{[0], [1], . . . , [m − 1]}

with respect to the equivalence relation of congruence mod m.

For example Z3 = {[0], [1], [2]} since Z = [0] ∪ [1] ∪ [2].

Bear in mind that we are treating these infinite sets [a] as though they are
individual entities, which they are since each equivalence class is different
than another,but we can treat Zm as a finite set since there are only
finitely many equivalence classes in Zm.

Later on we will take this even further by dropping the ’[]’ around the [r ].
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The facts we proved earlier show how the congruence relation is
’compatible’ with addition and multiplication.

With this in mind we define the following addition and multiplication
operations on the set Zm.

Definition

If [x ], [y ] ∈ Zm then [x ] + [y ] = [x + y ] and [x ] · [y ] = [xy ].

The key fact(s) to be verified is that this operation is ’closed’ namely that
[x ] + [y ] ∈ Zm and [x ] · [y ] ∈ Zm.

In lieu of a formal proof, let us consider some examples which illustrate
this very clearly.
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Example: Z5 = {[0], [1], [2], [3], [4]}.

[2] + [4] = [2 + 4] = [6] = [1] since 6 ≡ 1 (mod 5)

[4] + [1] = [4 + 1] = [5] = [0]

[2] + [2] = [2 + 2] = [4]

[2] + [0] = [2 + 0] = [2]

[2] · [4] = [2 · 4] = [8] = [3] since 8 ≡ 3 (mod 5)

[3] · [1] = [3 · 1] = [3]

[2] · [3] = [2 · 3] = [6] = [1]
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For simplicity, it’s easier to write Zm = {0, 1, . . . ,m − 1} and compute
a + b and a · b mod m by computing the appropriate remainders ’mod m’.

Ex: Z6 = {0, 1, 2, 3, 4, 5}

2 + 3 = 5

4 + 3 = 1

5 · 2 = 4

3 · 3 = 3 (Yes, this can happen.)
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Theorem

In Zm the operations + and · follow the following rules.
Let a, b, c ∈ Zm

(1) a + b = b + a [Commutativity]

(2) a · b = b · a [Commutativity]

(3) (a + b) + c = a+ (b + c) [Associativity]

(4) (a · b) · c = a · (b · c) [Associativity]

(5) a + 0 = a [Additive Identity]

(6) a · 1 = a [Multiplicative Identity]

(7) a(b + c) = ab + ac [Distributive Law]

(8) For each a ∈ Zm, there exists b ∈ Zm such that a+ b = 0.
[Additive Inverses]
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Proof.

(Sketch) (5),(6) If [a] ∈ Zm then [a] + [0] = [a + 0] = [a], and similarly
[a] · [1] = [a · 1] = [a].

(8) If a ∈ Zm then if we let b = m − a then b ∈ Zm and obviously
[a] + [b] = [a] + [m − a] = [a +m − a] = [m] = [0] in Zm.

So, for we may define −a to be m− a and observe that a+ (−a) = 0.
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As to the associativity of addition, (a + b) + c = a+ (b + c) we invoke an
image which really conveys why the parentheses don’t matter.

0

1

2
3

4

5

6

7

8
9

10

11

Here, if we represent a number in Z12 as clockwise rotation, and the sum
of two numbers as the composition of two rotations then it’s clear why, for
example (3 + 2) + 4 = 3 + (2 + 4) = 3 + 2 + 4 = 9.
Timothy Kohl (Boston University) MA294 Lecture January 23, 2024 9 / 20



Recall that if a ∈ Zm there exist b ∈ Zm such that a+ b = 0, i.e. b = −a.

For the multiplication operation, the analogue would be:

For each a ∈ Zm there exists b ∈ Zm such that a · b = 1

The problem is that this is not always the case.

For example, in Z6, if a = 2 then b ∈ Z6 would have to have the property
that 2b ≡ 1 (mod 6), but observe that for Z6 we have

2 · 0 = 0

2 · 1 = 2

2 · 2 = 4

2 · 3 = 0

2 · 4 = 2

2 · 5 = 4

So 2b = 1 is impossible.
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However, depending on the modulus m and a ∈ Zm one does have such
’multiplicative inverses’.

Example: In Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} let a = 2 then one may verify
that b = 5 is such that ab = 1, i.e. 2 · 5 = 10 = 1 in Z9, i.e. We may
write 2−1 = 5 in Z9.

Definition

An element r ∈ Zm is invertible (or a unit mod m) if there is some x ∈ Zm

such that rx = 1 in Zm.
In that case, x is called the multiplicative inverse of r and we write
r−1 = x .
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Example: Again in Z9, 4
−1 = 7 since 4 · 7 = 28 ≡ 1 (mod 9).

Note, in contrast, that 6−1 does not exist in Z9.Why?

Theorem

The only r ∈ Zm that have inverses are those for which gcd(r ,m) = 1,
that is ’r is co-prime to m’.

Recall that gcd(r ,m) means ’greatest common divisor of r and m’.
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Proof.

Suppose rx = 1 in Zm then we have

rx − 1 = qm

for some q.

Well then rx − qm = 1 so if d |r and d |m (i.e. d divides r and m) then
r = da for some a, and m = db for some b.

But then rx − qm = dax − qdb = d(ax − qb) but rx − qm = 1 do that d |1!

So the only conclusion is that d = 1, i.e. the only common divisor of r and
m is 1. For the converse we use the following FACT known as Bezout’s
Identity which is that, if gcd(r ,m) = 1 then there exists a, b such that
ar + bm = 1.

As such, ar − 1 = (−b)m which means ar ≡ 1 (mod m) i.e. r−1 = a, that
is, r is invertible.
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The invertible elements of Zm gives rise to this.

Definition

For m > 1 the units mod m is

U(m) = {r ∈ Zm |gcd(r ,m) = 1}

which is precisely the set of invertible elements of Zm.

Note, 0 6∈ U(m) for any m and the size of U(m) (as a set) is what is
known as

φ(m) = Euler’s Function, or Totient

and it is interesting to consider the value of φ(m).
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Example:

Z2 = {0, 1} → U(2) = {1} → φ(2) = 1

Z3 = {0, 1, 2} → U(3) = {1, 2} → φ(3) = 2

Z4 = {0, 1, 2, 3} → U(4) = {1, 3} → φ(4) = 2

Z5 = {0, 1, 2, 3, 4} → U(5) = {1, 2, 3, 4} → φ(5) = 4

Z6 = {0, 1, 2, 3, 4, 5} → U(6) = {1, 5} → φ(6) = 2

Z7 = {0, 1, 2, 3, 4, 5, 6} → U(7) = {1, 2, 3, 4, 5, 6} → φ(7) = 6

Z8 = {0, 1, 2, 3, 4, 5, 6, 7} → U(8) = {1, 3, 5, 7} → φ(8) = 4

Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} → U(9) = {1, 2, 4, 5, 7, 8} → φ(9) = 6
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One observation we can make about the φ function is that if m is prime
then φ(m) = m − 1.

The reason for this is that if m is prime then any r < m is never a divisor
since m is prime.

But before developing further properties of φ we need some to make some
observations about U(m).

If r , s ∈ U(m) then rs ∈ U(m).(Why? Well gcd(r ,m) = 1 and
gcd(s,m) = 1 implies gcd(rs,m) = 1.)

1 ∈ U(m) for all m (obviously, since 1 · 1 = 1 so 1−1 = 1)

If r ∈ U(m) then r−1 ∈ U(m).[Exercise]

These properties, as we’ll discuss later on, make U(m) into what we know
as a group.
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One important property of φ is this.

Proposition

If gcd(r , s) = 1 then φ(rs) = φ(r)φ(s).

Proof.

(Sketch)The basic idea is to consider the function ρ : U(rs) → U(r)×U(s)
defined by ρ(x) = (x∗, x∗∗) where x∗ is the remainder when x is divided by
r and x∗∗ is the remainder when x is divided by s.

As gcd(r , s) = 1 then one can show that this map is 1-1 and onto, so that

|U(rs)| = |U(r)× U(s)| = |U(r)| · |U(s)|

namely that φ(rs) = φ(r)φ(s).

We should note that this not necessarily true if r and s are not relatively
prime.
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We have another very important property of the φ function, in particular
to its application to modern cryptography.

Theorem

If a ∈ U(m) then aφ(m) ≡ 1 (mod m). (Euler - 1763)
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Proof.

(Sketch) If U(m) = {a1, a2, . . . , aφ(m)} where, without loss of generality
a1 = 1 then for a ∈ U(m) consider

{aa1, aa2, . . . , aaφ(m)}

and observe that, since a ∈ U(m) then aai = aaj implies a−1aai = a−1aaj ,
that is (a−1a)ai = (a−1a)aj and since a−1a = 1 then this implies that
ai = aj . As such, {aa1, aa2, . . . , aaφ(m)} is a rearrangement (or
permutation) of {a1, a2, . . . , aφ(m)} and so

aa1aa2 . . . aaφ(m) = a1a2 · · · aφ(m)

namely aφ(m)b = b where b = (a1a2 · · · aφ(m)) which means

aφ(m)bb−1 = bb−1

where, of course bb−1 = 1 so aφ(m) = 1.
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A simpler version of this result is known as Fermat’s (Little) Theorem,
namely for m = p a prime and gcd(a, p) = 1 then ap−1 ≡ 1 (mod p) since
φ(p) = p − 1.

As mentioned earlier, Euler’s theorem (although a 200+ year old theorem)
is at the heart of the RSA (public key) encryption system that is integral
to modern electronic commerce and general security online.
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