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Other basic facts about groups:

Proposition

Let x,y,z,a, b be elements of a group (G, ) then

xxy =xx*z— y =z (left cancellation)

axx = bx*x— a= b (right cancellation)

Proof.

| \

X*xy=Xx%Zz

-1 1

X " xxxy=x " xxxz (Note, we multiply both sides on the left.)
exy=exz

y=2

A similar argument works for the other statement. O

A,
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These 'cancellation’ rules imply the following.

Proposition

The Cayley table for a group (G, *) is a latin square.

Why? If we look at a row of the Cayley table:

vy [ ] z ]

X X*xy X *Z

we cannot have x x y = x % z unless y = z by left cancellation so there are
no repeats in a given row.
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And for columns:

L= [ < 1. ]]
a a*x
b bxx

we find that a* x = b x only if a = b so there are no repeated elements
in a column.
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The Order of a Group Element

Definition

In a group (G,*) if a€ G and n > 1 is an integer, then

a"=axax---xa
—_—

n-times

Thatis a' = a, a2 = a* a, a3 = axax a, and similar to how one defines 3°

for a number, we define a° = e, the identity of G.

And the use of the notation 'a—!’ for the inverse, fits in with this
definition, since

-1 -1 S(-D+1 —

a *a=a *a a =€

and similarly, we may define a=" to be a ' xa~lx ... xa7l = (a71)".

That is, exponents in groups, work like they do for numbers.
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Notation Alert: If x="4" like in Z or Z, then instead of writing

a"=axax---a

we write

na=a+a+---+a

so that, for example, if 2 € Zs we have 3-2=2+4+24+2=6=1.
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An important, yet not so obvious point is that for any a € G and any n
the power a” € G by the closure property.

The simplest way to see this is by noting that

a"=axax---*xaxa
—_—

(n — 1)-times

namely a" 1 x a.
So if we assume that 8”1 € G then a" 1xae Gsoa" € G.

And the same holds for negative powers.
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Other examples:
In D3, we have

0 _

2o = 1o

1

2o = 20

2

Iog = 20 © Nn2o0 = 4o

3 2

oo = Hog © 120 = r2a0 © 20 = ro [Why?]

rfzo = rf’zo 0 rpp = fy o roo = nao [Note: We're back at rip]

20 = 1240
-2

rog = 20
-3
Fo0 = 10
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For the flips like f1, the powers are a bit simpler

2 =r
fl="h
f2=rn
ff=h
fit="h
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And in Zg we have

Timothy Kohl (Boston University)

2=0
2=2
2=2+2=4

2=2+42+42=0
2=242+42+2=2
2=(-2)=4
2= (—4)=2

etc...
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The discussion of powers of elements leads naturally to the concept of
‘order’ of an element.

Definition

If x € G where G is finite, then the order of x is the least positive integer
m such that x™ = e, in which case we write |x| = m.

If G is infinite, then it's possible that x, x%, x3,... are all distinct

(non-identity) elements of G, in which case we say that x has
infinite order and we write |x| = co.

Note, if G is infinite, (as a set) it's still possible that it has elements of
finite order, there are many possibilities.
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Examples:

For 2 € Ze we have 1-2=2,2-2=4and 3-2=0and so |2| = 3.
In D3, |r2o| = 3 since r1220 = 40 and rfzo = ey = o

In contrast, |f1| = 2 since 2 = n.

For the element 1 € Z we have the multiples 1,1+1=21+1+4+1 =3,
none of which ever equals 0, so 1 has infinite order.

Note, for any group G, the identity element e has order 1, and it is the
unique element of order 1.
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Consequences of Order

If x € G has order m then x>™ = (xM)? = e? = e, and similarly x>™ = e
etc.

If x € G and |x| = m then x* = e if and only if m|t.

Proof.

Suppose xt = e, where t is not a multiple of m then by the division

algorithm t = gm + r where r € {1,...,m — 1} (i.e r # 0) which means
xb = xIMEr — xqmyr,

But x9™ = (x™)9 = e so we have that x* = x" but then since x = e then
x" =e.

However, since r < m this contradicts the fact that |x| = m, which is the
least positive power of x which is the identity. ]

v
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What can happen is that for some groups G, there is an x € G such that
G = {e,x,xz, . ,x"’_l} and one says that x generates G.

Also, we sometimes use the notation of '1l" for the identity which is
consistent with the usual view of raising a number to the zero-th power
being 1, i.e. x% =1, so that if G is generated by x, it consists of
{1,%,x2, ..., x™ 1} if |x| = m.

If G is generated by x the we write G = (x), and we sometimes say G is a
cyclic group since the powers of x 'cycle’ through these distinct powers, i.e.

2 m—-1 _m __ _ —
1,x,x%, ..., x , X7 =1,x = X, X = x°,... etc.
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If G is infinite, then it's possible that for some element x one has that
G=(x)={x"|nelZ}.

How does this work?
Well, it simply means that each non-zero power of x is not the identity of

G, so that G consists of

in which case we say that G is an infinite cyclic group.
The prime example of this is Z = (1) since every element of Z is a
multiple of 1.

In fact, we can use this idea to actually define an infinite group consisting
of powers of x.
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For x a 'variable’ (symbol, whatever), one can define 'the’ infinite cyclic

group
Coo = {x" | n€ Z}

with the group operation being based on the rules of exponents, namely:

x'xx) = x'

which is very naturally closed, and associative since
i+j+k

X' (0 % xK) = X xR = x

which is the same as (x/ * x/) % xk = x/H % xk.
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0 since clearly x0 % x' = x’

—i

Moreover it contains an identity element 1 = X
and x' x x% = x/, and similarly every element x' has inverse x

If you've observed that the operations in C,, mirror those of the integers,
you are correct, but the interesting contrast is that C is 'multiplicative’
while Z is an additive group.
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