MA294 Lecture

Timothy Kohl

Boston University

February 6, 2024

Other basic facts about groups:

Proposition

Let x, y, z, a, b be elements of a group $(G, *)$ then

$$
\begin{aligned}
& x * y=x * z \rightarrow y=z \text { (left cancellation) } \\
& a * x=b * x \rightarrow a=b \text { (right cancellation) }
\end{aligned}
$$

Proof.

$$
\begin{aligned}
x * y & =x * z \\
x^{-1} * x * y & =x^{-1} * x * z(\text { Note, we multiply both sides on the left.) } \\
e * y & =e * z \\
y & =z
\end{aligned}
$$

A similar argument works for the other statement.

These 'cancellation' rules imply the following.

Proposition

The Cayley table for a group $(G, *)$ is a latin square.

Why? If we look at a row of the Cayley table:

we cannot have $x * y=x * z$ unless $y=z$ by left cancellation so there are no repeats in a given row.

And for columns:

$*$		x	\ldots	
a		$a * x$		
b		$b * x$		

we find that $a * x=b * x$ only if $a=b$ so there are no repeated elements in a column.

The Order of a Group Element

Definition

In a group $(G, *)$ if $a \in G$ and $n \geq 1$ is an integer, then

$$
a^{n}=\underbrace{a * a * \cdots * a}_{n \text {-times }}
$$

That is $a^{1}=a, a^{2}=a * a, a^{3}=a * a * a$, and similar to how one defines a^{0} for a number, we define $a^{0}=e$, the identity of G.

And the use of the notation ' a^{-1} ' for the inverse, fits in with this definition, since

$$
a^{-1} * a=a^{-1} * a^{1}=a^{(-1)+1}=a^{0}=e
$$

and similarly, we may define a^{-n} to be $a^{-1} * a^{-1} * \cdots * a^{-1}=\left(a^{-1}\right)^{n}$.
That is, exponents in groups, work like they do for numbers.

Notation Alert: If $*=$ '+' like in \mathbb{Z} or \mathbb{Z}_{m} then instead of writing

$$
a^{n}=a * a * \cdots a
$$

we write

$$
n a=a+a+\cdots+a
$$

so that, for example, if $2 \in \mathbb{Z}_{5}$ we have $3 \cdot 2=2+2+2=6=1$.

An important, yet not so obvious point is that for any $a \in G$ and any n the power $a^{n} \in G$ by the closure property.

The simplest way to see this is by noting that

$$
a^{n}=\underbrace{a * a * \cdots * a}_{(n-1)-\text { times }} * a
$$

namely $a^{n-1} * a$.

So if we assume that $a^{n-1} \in G$ then $a^{n-1} * a \in G$ so $a^{n} \in G$.

And the same holds for negative powers.

Other examples: In D_{3}, we have

$$
\begin{aligned}
& r_{120}^{0}=r_{0} \\
& r_{120}^{1}=r_{120} \\
& r_{120}^{2}=r_{120} \circ r_{120}=r_{240} \\
& r_{120}^{3}=r_{120}^{2} \circ r_{120}=r_{240} \circ r_{120}=r_{0} \text { [Why?] } \\
& r_{120}^{4}=r_{120}^{3} \circ r_{120}=r_{0} \circ r_{120}=r_{120} \text { [Note: We're back at } r_{120} \text {] } \\
& r_{120}^{-1}=r_{240} \\
& r_{120}^{-2}=r_{120} \\
& r_{120}^{-3}=r_{0}
\end{aligned}
$$

For the flips like f_{1}, the powers are a bit simpler

$$
\begin{aligned}
f_{1}^{0} & =r_{0} \\
f_{1}^{1} & =f_{1} \\
f_{1}^{2} & =r_{0} \\
f_{1}^{3} & =f_{1} \\
f_{1}^{-1} & =f_{1}
\end{aligned}
$$

And in \mathbb{Z}_{6} we have

$$
\begin{aligned}
0 \cdot 2 & =0 \\
1 \cdot 2 & =2 \\
2 \cdot 2 & =2+2=4 \\
3 \cdot 2 & =2+2+2=0 \\
4 \cdot 2 & =2+2+2+2=2 \\
(-1) \cdot 2 & =(-2)=4 \\
(-2) \cdot 2 & =(-4)=2 \\
\text { etc. } &
\end{aligned}
$$

The discussion of powers of elements leads naturally to the concept of 'order' of an element.

Definition

If $x \in G$ where G is finite, then the order of x is the least positive integer m such that $x^{m}=e$, in which case we write $|x|=m$.

If G is infinite, then it's possible that x, x^{2}, x^{3}, \ldots are all distinct (non-identity) elements of G, in which case we say that x has infinite order and we write $|x|=\infty$.

Note, if G is infinite, (as a set) it's still possible that it has elements of finite order, there are many possibilities.

Examples:

For $2 \in \mathbb{Z}_{6}$ we have $1 \cdot 2=2,2 \cdot 2=4$ and $3 \cdot 2=0$ and so $|2|=3$.
$\ln D_{3},\left|r_{120}\right|=3$ since $r_{120}^{2}=r_{240}$ and $r_{120}^{3}=r_{360}=r_{0}$

In contrast, $\left|f_{1}\right|=2$ since $f_{1}^{2}=r_{0}$.

For the element $1 \in \mathbb{Z}$ we have the multiples $1,1+1=2,1+1+1=3, \ldots$ none of which ever equals 0 , so 1 has infinite order.

Note, for any group G, the identity element e has order 1 , and it is the unique element of order 1 .

Consequences of Order

If $x \in G$ has order m then $x^{2 m}=\left(x^{m}\right)^{2}=e^{2}=e$, and similarly $x^{3 m}=e$ etc.

Theorem

If $x \in G$ and $|x|=m$ then $x^{t}=e$ if and only if $m \mid t$.

Proof.

Suppose $x^{t}=e$, where t is not a multiple of m then by the division algorithm $t=q m+r$ where $r \in\{1, \ldots, m-1\}$ (i.e $r \neq 0$) which means $x^{t}=x^{q m+r}=x^{q m} x^{r}$.

But $x^{q m}=\left(x^{m}\right)^{q}=e$ so we have that $x^{t}=x^{r}$ but then since $x^{t}=e$ then $x^{r}=e$.

However, since $r<m$ this contradicts the fact that $|x|=m$, which is the least positive power of x which is the identity.

What can happen is that for some groups G, there is an $x \in G$ such that $G=\left\{e, x, x^{2}, \ldots, x^{m-1}\right\}$ and one says that x generates G.

Also, we sometimes use the notation of ' 1 ' for the identity which is consistent with the usual view of raising a number to the zero-th power being 1 , i.e. $x^{0}=1$, so that if G is generated by x, it consists of $\left\{1, x, x^{2}, \ldots, x^{m-1}\right\}$ if $|x|=m$.

If G is generated by x the we write $G=\langle x\rangle$, and we sometimes say G is a cyclic group since the powers of x 'cycle' through these distinct powers, i.e.

$$
1, x, x^{2}, \ldots, x^{m-1}, x^{m}=1, x^{m+1}=x, x^{m+2}=x^{2}, \ldots \text { etc. }
$$

If G is infinite, then it's possible that for some element x one has that $G=\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$.

How does this work?

Well, it simply means that each non-zero power of x is not the identity of G, so that G consists of

$$
\left\{\ldots, x^{-3}, x^{-2}, x^{-1}, x^{0}=1, x^{1}=x, x^{2}, x^{3}, \ldots\right\}
$$

in which case we say that G is an infinite cyclic group.
 multiple of 1 .

In fact, we can use this idea to actually define an infinite group consisting of powers of x.

For x a 'variable' (symbol, whatever), one can define 'the' infinite cyclic group

$$
C_{\infty}=\left\{x^{n} \mid n \in \mathbb{Z}\right\}
$$

with the group operation being based on the rules of exponents, namely:

$$
x^{i} * x^{j}=x^{i+j}
$$

which is very naturally closed, and associative since

$$
x^{i} *\left(x^{j} * x^{k}\right)=x^{i} * x^{j+k}=x^{i+j+k}
$$

which is the same as $\left(x^{i} * x^{j}\right) * x^{k}=x^{i+j} * x^{k}$.

Moreover, it contains an identity element $1=x^{0}$ since clearly $x^{0} * x^{i}=x^{i}$ and $x^{i} * x^{0}=x^{i}$, and similarly every element x^{i} has inverse x^{-i}.

If you've observed that the operations in C_{∞} mirror those of the integers, you are correct, but the interesting contrast is that C_{∞} is 'multiplicative' while \mathbb{Z} is an additive group.

