MA294 Lecture

Timothy Kohl

Boston University

February 6, 2024

Other basic facts about groups:

Proposition

Let x, y, z, a, b be elements of a group (G, *) then

$$x * y = x * z \rightarrow y = z$$
 (left cancellation)

$$a * x = b * x \rightarrow a = b$$
 (right cancellation)

Proof.

$$x * y = x * z$$

$$x^{-1} * x * y = x^{-1} * x * z$$
 (Note, we multiply both sides on the *left*.)

$$e * y = e * z$$

$$y = z$$

A similar argument works for the other statement.

Timothy Kohl (Boston University)

These 'cancellation' rules imply the following.

Proposition

The Cayley table for a group (G, *) is a latin square.

Why? If we look at a row of the Cayley table:

*	у	 Ζ	
X	<i>x</i> * <i>y</i>	<i>X</i> * <i>Z</i>	

we cannot have x * y = x * z unless y = z by left cancellation so there are no repeats in a given row.

*	X	•••	
а	a * x		
b	<i>b</i> * <i>x</i>		

we find that a * x = b * x only if a = b so there are no repeated elements in a column.

The Order of a Group Element

Definition

In a group (G,*) if $a \in G$ and $n \geq 1$ is an integer, then

$$a^n = \underbrace{a * a * \cdots * a}_{n-\text{times}}$$

That is $a^1 = a$, $a^2 = a * a$, $a^3 = a * a * a$, and similar to how one defines a^0 for a *number*, we define $a^0 = e$, the identity of G.

And the use of the notation a^{-1} for the inverse, fits in with this definition, since

$$a^{-1} * a = a^{-1} * a^1 = a^{(-1)+1} = a^0 = e$$

and similarly, we may define a^{-n} to be $a^{-1} * a^{-1} * \cdots * a^{-1} = (a^{-1})^n$. That is, exponents in groups, work like they do for numbers. Notation Alert: If *='+' like in \mathbb{Z} or \mathbb{Z}_m then instead of writing

$$a^n = a * a * \cdots a$$

we write

$$na = a + a + \cdots + a$$

so that, for example, if $2 \in \mathbb{Z}_5$ we have $3 \cdot 2 = 2 + 2 + 2 = 6 = 1$.

An important, yet not so obvious point is that for any $a \in G$ and any n the power $a^n \in G$ by the closure property.

The simplest way to see this is by noting that

$$a^n = \underbrace{a * a * \cdots * a}_{(n-1)\text{-times}} * a$$

namely $a^{n-1} * a$.

So if we assume that $a^{n-1} \in G$ then $a^{n-1} * a \in G$ so $a^n \in G$.

And the same holds for negative powers.

Other examples: In D_3 , we have

$$\begin{aligned} r_{120}^{0} &= r_{0} \\ r_{120}^{1} &= r_{120} \\ r_{120}^{2} &= r_{120} \circ r_{120} = r_{240} \\ r_{120}^{3} &= r_{120}^{2} \circ r_{120} = r_{240} \circ r_{120} = r_{0} \text{ [Why?]} \\ r_{120}^{4} &= r_{120}^{3} \circ r_{120} = r_{0} \circ r_{120} = r_{120} \text{ [Note: We're back at } r_{120}] \\ r_{120}^{-1} &= r_{240} \\ r_{120}^{-2} &= r_{120} \\ r_{120}^{-3} &= r_{0} \end{aligned}$$

For the flips like f_1 , the powers are a bit simpler

$$f_1^0 = r_0$$

$$f_1^1 = f_1$$

$$f_1^2 = r_0$$

$$f_1^3 = f_1$$

$$f_1^{-1} = f_1$$

And in \mathbb{Z}_6 we have

$$0 \cdot 2 = 0$$

$$1 \cdot 2 = 2$$

$$2 \cdot 2 = 2 + 2 = 4$$

$$3 \cdot 2 = 2 + 2 + 2 = 0$$

$$4 \cdot 2 = 2 + 2 + 2 + 2 = 2$$

$$(-1) \cdot 2 = (-2) = 4$$

$$(-2) \cdot 2 = (-4) = 2$$

etc...

The discussion of powers of elements leads naturally to the concept of 'order' of an element.

Definition

If $x \in G$ where G is finite, then the <u>order</u> of x is the least positive integer m such that $x^m = e$, in which case we write |x| = m.

If G is infinite, then it's possible that x, x^2, x^3, \ldots are all distinct (non-identity) elements of G, in which case we say that x has <u>infinite order</u> and we write $|x| = \infty$.

Note, if G is infinite, (as a set) it's still possible that it has elements of finite order, there are many possibilities.

Examples:

For $2 \in \mathbb{Z}_6$ we have $1 \cdot 2 = 2$, $2 \cdot 2 = 4$ and $3 \cdot 2 = 0$ and so |2| = 3.

In D_3 , $|r_{120}| = 3$ since $r_{120}^2 = r_{240}$ and $r_{120}^3 = r_{360} = r_0$

In contrast, $|f_1| = 2$ since $f_1^2 = r_0$.

For the element $1 \in \mathbb{Z}$ we have the multiples 1, 1+1 = 2, 1+1+1 = 3, ... none of which *ever* equals 0, so 1 has infinite order.

Note, for any group G, the identity element e has order 1, and it is the unique element of order 1.

Consequences of Order

If $x \in G$ has order m then $x^{2m} = (x^m)^2 = e^2 = e$, and similarly $x^{3m} = e$ etc.

Theorem

If $x \in G$ and |x| = m then $x^t = e$ if and only if m|t.

Proof.

Suppose $x^t = e$, where t is not a multiple of m then by the division algorithm t = qm + r where $r \in \{1, ..., m-1\}$ (i.e $r \neq 0$) which means $x^t = x^{qm+r} = x^{qm}x^r$.

But $x^{qm} = (x^m)^q = e$ so we have that $x^t = x^r$ but then since $x^t = e$ then $x^r = e$.

However, since r < m this contradicts the fact that |x| = m, which is the *least* positive power of x which is the identity.

Timothy Kohl (Boston University)

MA294 Lecture

What can happen is that for some groups G, there is an $x \in G$ such that $G = \{e, x, x^2, \dots, x^{m-1}\}$ and one says that x generates G.

Also, we sometimes use the notation of '1' for the identity which is consistent with the usual view of raising a number to the zero-th power being 1, i.e. $x^0 = 1$, so that if G is generated by x, it consists of $\{1, x, x^2, \ldots, x^{m-1}\}$ if |x| = m.

If G is generated by x the we write $G = \langle x \rangle$, and we sometimes say G is a *cyclic* group since the powers of x 'cycle' through these distinct powers, i.e.

$$1, x, x^2, \dots, x^{m-1}, x^m = 1, x^{m+1} = x, x^{m+2} = x^2, \dots$$
 etc.

If G is infinite, then it's possible that for some element x one has that $G = \langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}.$

How does this work?

Well, it simply means that each non-zero power of x is not the identity of G, so that G consists of

$$\{\ldots, x^{-3}, x^{-2}, x^{-1}, x^0 = 1, x^1 = x, x^2, x^3, \ldots\}$$

in which case we say that G is an infinite cyclic group. The prime example of this is $\mathbb{Z} = \langle 1 \rangle$ since every element of \mathbb{Z} is a multiple of 1.

In fact, we can use this idea to actually *define* an infinite group consisting of powers of x.

For x a 'variable' (symbol, whatever), one can define 'the' infinite cyclic group

$$C_{\infty} = \{x^n \mid n \in \mathbb{Z}\}$$

with the group operation being based on the rules of exponents, namely:

$$x^i * x^j = x^{i+j}$$

which is very naturally closed, and associative since

$$x^{i} * (x^{j} * x^{k}) = x^{i} * x^{j+k} = x^{i+j+k}$$

which is the same as $(x^i * x^j) * x^k = x^{i+j} * x^k$.

Moreover, it contains an identity element $1 = x^0$ since clearly $x^0 * x^i = x^i$ and $x^i * x^0 = x^i$, and similarly every element x^i has inverse x^{-i} .

If you've observed that the operations in C_{∞} mirror those of the integers, you are correct, but the interesting contrast is that C_{∞} is 'multiplicative' while \mathbb{Z} is an additive group.