
MA294 Lecture

Timothy Kohl

Boston University

February 20, 2024

Timothy Kohl (Boston University) MA294 Lecture February 20, 2024 1 / 20



Subgroups

Definition

A subset H ⊆ G (for G a group) is a subgroup if H itself is a group with
respect to the same group operation it inherits from G .
Notation: If so, then we write H ≤ G .

Example: G = Z and let H = 〈2〉 = 2Z = {even integers} = {2n | n ∈ Z}

Observe this is a subgroup since 2m + 2n = 2(m + n) so it’s closed, and
0 = 2 · 0 ∈ H, and for 2m ∈ H we note that −2m = 2(−m) ∈ H so H is
indeed a group in and of itself.
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Note, we do not need to check that the group operation in H is associative
since it’s contained in a group (namely G ) which is already associative.
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Example:

G = D3 = {r0, r120, r240, f1, f2, f3}

H = 〈r120〉 = {r0, r120, r240}

H is a subgroup since the composition of two rotations is a rotation so H

is closed, and the identity r0 ∈ H, and r−1
120 = r240 (and symmetrically

r−1
240 = r120) so H contains inverses for all its elements.

Similarly K = 〈f1〉 = {r0, f1} is a subgroup since f1 ◦ f1 = r0 and r0 ∈ K

and f −1
1 = f1 so K contains inverses etc.
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Note, not all subsets of a group G are subgroups, for example

H̃ = {r0, r120.r240, f1}

is not a subgroup since r120 ◦ f1 = f3 6∈ H̃.

i.e. H̃ is not closed.
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Verifying that H ⊆ G is a subgroup can be simplified.

Subgroup Test

H ⊆ G is a subgroup if
(i) a, b ∈ H implies ab ∈ H (closure)
(ii) a ∈ H implies a−1 ∈ H

We note that associativity does not need to be checked, and (i) and (ii)
imply that H contains the identity. (Why? - Exercise)
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An application of this test is the following basic class of examples of
subgroups.

Definition

If x ∈ G and if |x | = m then H = 〈x〉 = {e, x , x2, . . . , xm−1} is the cyclic

subgroup generated by x which is a subgroup of G .

If x has infinite order then H = 〈x〉 = {. . . , x−2
, x−1

, e, x , x2, . . . } is also a
subgroup of G .

Why is this always a subgroup?

If x i , x j ∈ H then x ix j = x i+j ∈ H and x i ∈ H implies x−i ∈ H since H

consists of all powers of x so it must contain x−i .
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A more advanced example of where this test is used is for subgroups which
are defined by a property that determines whether an element is in the
subgoup or not, rather than an explicit list of elements.

The following example is interesting, especially in light of the fact that
there are groups which are non-abelian.

Definition

For G a group, the center of a group is

Z (G ) = {z ∈ G | zg = gz for all g ∈ G}

which is the set of those elements of G which commute with every

element of G .
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Why is Z (G ) a subgroup?

Well, if z1, z2 ∈ Z (G ) then we wish to show z1z2 ∈ Z (G ).

If g ∈ G then z1z2g = z1(z2g) = z1(gz2) = (z1g)z2 = (gz1)z2 = gz1z2
and so, indeed, z1z2 ∈ Z (G ).

If now z ∈ Z (G ) and g ∈ G then zg = gz so z−1zg = z−1gz namely
g = z−1gz and so gz−1 = z−1gzz−1, that is gz−1 = z−1g .

That is, z ∈ Z (G ) implies z−1 ∈ Z (G ).
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So what does Z (G ) look like?

For abelian groups G , if you look at the definition it’s pretty clear that
Z (G ) = G .

In contrast, Z (D3) = {r0} (i.e. just the identity) which can happen,
although for other non-abelian groups, G , it turns out that Z (G ) is a
proper subgroup, neither {e} nor all of G .

As we shall see, the nature of the subgroups of a group is very important
to ones understanding of the group itself.
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Coset and LaGrange’s Theorem

One of the key result in (finite) group theory centers around the
relationship between a given group and its subgroups.

Definition

Let H be a subgroup of a (finite) group G and for g ∈ G

the left coset gH = {gh | h ∈ H}

the right coset Hg = {hg | h ∈ H}

So if H = {h1, . . . , hm} for example, then gH = {gh1, . . . , ghm} and
Hg = {h1g , . . . , hmg}.
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Example: Let G = D3 and H = 〈r120〉 = {r0, r120, r240}.

f1H = {f1 ◦ r0, f1 ◦ r120, f1 ◦ r240}

= {f1, f2, f3}

or, if K = 〈f1〉 = {r0, f1} then

r120K = {r120 ◦ r0, r120 ◦ f1}

= {r120, f3}

and, in contrast

Kr120 = {r0 ◦ r120, f1 ◦ r120}

= {r120, f2}

which shows that we can’t expect gH = Hg necessarily.
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Important Obervations

gH and Hg are not necessarily equal.

gH and Hg are both subsets of G , but generally not subgroups.

In fact, gH is a subgroup only if g ∈ H, in which case gH = H.
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Notation Alert: If G is an ’additive’ group like Z or Zm then we use
additive notation for the cosets.

For example: Consider (Z,+) and let H = 3Z = 〈3〉 so that

H = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . . }

where now, for example 1 + H = {. . . ,−8,−5,−2, 1, 4, 7, 10, . . . }.

This example can be used to demonstrate another interesting fact, namely
that g1H = g2H (or g1 + H = g2 + H) even if g1 6= g2.

Observe for H = 3Z above that 4 + H = {. . . ,−5,−2, 1, 4, 7, 10, 14, . . . }
which is the same as 1 + H.

Why?(We’ll get back to this question soon.)
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Our goal is to show an important relationship between the size of a group,
and the size of any subgroup.

Proposition

For H ≤ G a subgroup, and g ∈ G one has that |gH| = |H| and
|Hg | = |H|.

Proof.

Define f : H → gH by f (h) = gh and observe that if f (x) = f (y) then
gx = gy which implies that g−1gx = g−1gy , that is, x = y so f is 1-1.

And if gz ∈ gH then it’s pretty clear that gz = f (z) so f is onto, and
therefore a bijection, and so the cardinality of the domain and range are
the same, i.e. |H| = |gH|, and a similar argument shows that |H| = |Hg |
too.
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Going further into the study of cosets, we have the following.

Proposition

If H ≤ G is a subgroup, then for g1, g2 ∈ G, either g1H = g2H or

g1H ∩ g2H = ∅.

Proof.

Suppose g1H ∩ g2H 6= ∅ then there exists some x in the intersection. So
x = g1h1 and x = g2h2, i.e. g1h1 = g2h2 so g1 = g2h2h

−1
1 .

Now, if g1k ∈ g1H then g1k = g2h2h
−1
1 k = g2(h2h

−1
1 k) where

h2h
−1
1 k ∈ H. (Why?)

This implies that g1k ∈ g2H and so g1H ⊆ g2H.
Similarly, g1h1 = g2h2 implies that g2 = g1h1h

−1
2 and so if g2t ∈ g2H (i.e.

t ∈ H) then g2t = g1h1h
−1
2 t = g1(h1h

−1
2 t) where h1h

−1
2 t ∈ H, which

means g2t = g1h1h
−1
2 t ∈ g1H, thus g2H ⊆ g1H.

Thus g1H = g2H
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Note, if H ≤ G and e ∈ G is the identity, then eH = H since if
H = {h1, h2, . . . hm} then eH = {eh1, eh2, . . . , ehm} = {h1, . . . , hm}.

And, in general, gH = H if and only if g ∈ H. Exercise!

Lastly, for H ≤ G , one has g ∈ gH since if H = {h1, . . . , hm} then,
assuming h1 = e we have gH = {gh1, . . . , ghm} where now, gh1 = ge = g .

This last observation may seem somewhat trivial, but it highlights the fact
that, with respect to a given subgroup H ≤ G , every element g ∈ G lies in
at least one coset of H.

And even though it may be that g1H = g2H the elements of G are such
that every element of G lies in exactly one coset of H in G .
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What this implies is that, if G is finite, then for H ≤ G one has some
elements (called coset representatives) g1, . . . , gr such that

G = g1H ∪ g2H ∪ · · · ∪ grH

where each coset above is distinct, i.e. giH ∩ gjH = ∅ for i 6= j .

Note, we can assume that g1 = e since one of the cosets must be the
’trivial’ coset, namely H itself, i.e. eH = H.

So G can be partitioned into a union of disjoint cosets.

This has important implications for finite groups.
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Example: D3 = {r0, r120, r240, f1, f2, f3} and H = {r0, r120, r240}.

The first coset to consider is the trivial coset

r0H = {r0 ◦ r0, r0 ◦ r120, r0 ◦ r240} = {r0, r120, r240}

Since this is clearly not all of D3, we look for an element of D3 not in H,
say f1 and look at what coset we get.

f1H = {f1 ◦ r0, f1 ◦ r120, f1 ◦ r240} = {f1, f2, f3}

and then we see that r0H ∪ f1H = D3 so we are done, i.e. there are no
other cosets to make which are disjoint from these two.
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Similarly, if K = {r0, f1} then we can show that

D3 = r0K ∪ r120K ∪ r240K

where r0K = K , r120K = {r120, f3} and r240K = {r240, f2}.

We note the fact (observed earlier) that the size of each coset is the same
as the size of the group, which, as we’ll see, is an important fact.
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