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Lagrange’s Theorem

Theorem

If G is a finite group and H ≤ G then |H|
∣

∣ |G |.

Proof.

We’ve already established most of the important facts.

We know that with respect to H, there exists elements of G , g1, . . . , gr
such that

G = g1H ∪ g2H ∪ · · · ∪ grH

where each coset is disjoint from the others, and so

|G | = |g1H|+ |g2H| + · · · + |grH|

and the proof is finished by recalling the other fact we noted, which is that
|giH| = |H| for each gi and so |G | = r |H|, that is |H|

∣

∣ |G |.
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One other point to mention about cosets is related to notation.

Definition

If H ≤ G then the number of distinct cosets of H in G is the index of H in
G and is denoted [G : H].

We note, that if G is finite, then Lagrange’s theorem implies that
[G : H] = |G |

|H| .

We note, for reference, that [G : H] also makes sense for infinite groups.
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Consider G = Z and H = 2Z ≤ G , namely H = {. . . ,−4,−2, 0, 2, 4, . . . }
and start with the trivial coset

0 + H = {. . . ,−4,−2, 0, 2, 4, . . . } (all even integers!)

and since this is not all of Z we pick an element not in H, say 1 and
consider the coset

1 + H = {. . . ,−3,−1, 1, 3, 5 . . . } (all odd integers!!)

and we realize that there are no other elements not already accounted for,
so we’re done and we can write

Z = (0 + H) ∪ (1 + H) i.e. the union of the even and odd integers

so [Z : 2Z] = 2.

Exericse: What is [Z : mZ] where mZ = 〈m〉?
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One other thing to note is that everything we say about left cosets, holds
for right cosets as well, so there’s no particular ’preference’ for left cosets
over right cosets.

That is, the number of left cosets of a subgroup H ≤ G is the same as the
number of right cosets, and a group can be partitioned into a disjoint
union of right cosets.

The only point to reiterate is that for a given subgroup, H ≤ G it need not
be the case that gH = Hg .
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Here is one of the first applications of Lagrange’s theorem, and what is
kind of extraordinary is how simple the proof is, considering the depth of
the statement being proved.

We have seen that, for example, there are two groups with 4 elements, for
example Z4 and V = Z2 × Z2 and a general question that’s important in
group theory is:

How many distinct groups are there of a given order (size)?

where by distinct, we mean not isomorphic, for example Z4 6∼= Z2 × Z2.

For |G | = 4 for example, it turns out that there are only 2 non-isomorphic
groups, namely Z4 and Z2 × Z2 but, in general, it gets harder to figure out
the number of different groups of order (size) n as n gets larger.
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We can say this however.

Theorem

If |G | = p for p a prime number, then G ∼= Cp . (where Cp
∼= Zp)

Proof.

Let x ∈ G and consider H = 〈x〉 ≤ G .

If x = e then |H| = 1 of course. If x 6= e then |H| > 1 but, by Lagrange’s
theorem, |H|

∣

∣|G |.

However, since |G | = p then, since |H| > 1 we must have |H| = p, so that
H = {e, x , x2, . . . , xp−1}.

But |H| = |G | = p and H is a subset of G , which means H = G , but this
means G = 〈x〉 and so G ∼= Cp, the cyclic group of order p.
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This is somewhat extraordinary since it implies, for example that there is
exactly 1 group of order 127, but, in contrast, it is known that there are
2328 groups of order 128!

Again, the number of distinct groups of a given size is, in fact, an open
problem in group theory.
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One of the other facts we can infer from looking at the proof of the above
theorem is this.

Proposition

If G is a finite group, say |G | = n then for x ∈ G, one has |x |
∣

∣n. (i.e.
|x |

∣

∣|G |)

Why?

Quite simply, if x ∈ G , then x gives rise to the subgroup
H = 〈x〉 = {e, x , . . . , xm−1} for some m where |x | = m = |H|, so by
Lagrange’s theorem, m|n.
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Permutation Groups

Groups like D3 are one example of a broad (and critically important) class
of groups called permutation groups.

Definition

Given a (finite) set X , a function σ : X → X that is one-to-one and onto
is a permutation of X .

i.e. σ(x1) = σ(x2) implies x1 = x2 and given y ∈ X , there exists x ∈ X
such that σ(x) = y .
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Example: X = {1, 2, 3}, let σ : X → X be given by σ(1) = 2, σ(2) = 3,
σ(3) = 1.

Note: We can think of this as a ’re-ordering’ of the elements of X , i.e.

{1, 2, 3} → {2, 3, 1}

and if one has two permutations σ, τ of X then, because they are
functions, they can be composed.
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Proposition

Given two permutations σ, τ of X , the composite σ ◦ τ defined by
(σ ◦ τ)(x) = σ(τ(x)) is also a permutation.

Proof.

It’s clear that σ ◦ τ is a function from X to X . If now
(σ ◦ τ)(x1) = (σ ◦ τ)(x2) then σ(τ(x1)) = σ(τ(x2)) so, since σ is 1-1, we
have that τ(x1) = τ(x2), and since τ is 1-1, then x1 = x2.

Similarly, σ ◦ τ is onto since both σ and τ are each onto.

Note: If X is finite then σ being 1-1 is equivalent to it being onto, so you
only need to check that it’s 1-1 to verify it’s a permutation.

Timothy Kohl (Boston University) MA294 Lecture February 22, 2024 12 / 1



Example: If X = {1, 2, 3}, and τ(1) = 1, τ(2) = 3, τ(3) = 2, and
σ(1) = 2, σ(2) = 3, σ(3) = 1 then

(σ ◦ τ)(1) = σ(τ(1)) = σ(1) = 2

(σ ◦ τ)(2) = σ(τ(2)) = σ(3) = 1

(σ ◦ τ)(3) = σ(τ(3)) = σ(2) = 3

and in comparison (τ ◦ σ)(1) = 3, (τ ◦ σ)(2) = 2, (τ ◦ σ)(3) = 1, the point
being that σ ◦ τ 6= τ ◦ σ as functions from X to X .
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Theorem

Given a (finite) set X , the set Perm(X ), (also called Sym(X )) of all
permutations of X forms a group under composition.

Proof.

We’ve already verified closure, and we’ve already mentioned that function
composition is associative.

The permutation I : X → X given by I (x) = x for all x ∈ X is the identity
since (σ ◦ I )(x) = σ(I (x)) = σ(x), so σ ◦ I = σ and similarly I ◦ σ = σ.

And as each σ is a bijection, it has an inverse as a function σ−1 which can
be shown (Exercise!) is also a permutation and that, of course
σ ◦ σ−1 = I = σ−1 ◦ σ.
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Ex:

σ(1) = 2

σ(2) = 3

σ(3) = 1

implies

σ
−1(1) = 3

σ
−1(2) = 1

σ
−1(3) = 2
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The following fact is very reminiscent of certain arguments one sees in
statistics, especially in questions about ’how many ways are there to do
something’.

Theorem

If |X | = n then |Perm(X )| = n!.

Proof.

Say X = {x1, x2, . . . , xn} then for σ ∈ Perm(X ) we have

n choices for σ(x1)

n − 1 choices for σ(x2)

n − 2 choices for σ(x3)

↓

2 choices for σ(xn−1)

1 choices for σ(xn)

so that there are n · (n − 1) · (n − 2) · · · 2 · 1 = n! possible different
permutations σ.
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Notation: For X = {1, . . . , n}, Perm(X ) = Sn, the nth symmetric group.

For small n one can readily enumerate the elements of Sn.

For σ ∈ S3, σ(1) = a, σ(2) = b, σ(3) = c so we can express σ in ’table
notation’

σ =

(

1 2 3
a b c

)
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S3 =

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 3 1

)

,

(

1 2 3
3 1 2

)

,

(

1 2 3
1 3 2

)

,

(

1 2 3
3 2 1

)

,

(

1 2 3
2 1 3

)}

The permutations of {1, 2, 3} should remind one of the dihedral group D3,
especially since both have 6 elements and permute three ’points’.
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Definition

A group G is a permutation group if G ≤ Perm(X ) for some X .

Note, this is not saying G = Perm(X ), but that G acts as permutations on
set X , but does not necessarily represent all permutations of X .
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As alluded to on the previous page, our first example is S3 above, which
can be viewed as D3 if we view the elements of D3 as permutations of the
vertices {1, 2, 3}, for example:

3

1

2

r120

2

3

1

so that we can associate r120 ↔

(

1 2 3
2 3 1

)

.
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As we mentioned a while ago, for every n there is the nth Dihedral group
Dn of symmetries of the n-gon.

Example: D4 = {r0, r90, r180, r270, f(1,2), f(2,3), f(3,4), f(1,3)}

4 3

21
r90

3 2

14

which, since 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1, is representable by the

permutation

(

1 2 3 4
2 3 4 1

)

∈ S4.
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The other rotations are fairly clear.
As to the flips consider:

4 3

21
f(1,2)

3 4

12

4 3

21
f(2,4)

4 1

23

f(1,2) ↔

(

1 2 3 4
2 1 4 3

)

f(2,4) ↔

(

1 2 3 4
3 2 1 4

)

where the subscript indicates the ’axis’ about which the square is flipped.
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As a subgroup of S4, we can represent D4 as follows:

{(

1 2 3 4
1 2 3 4

)

,

(

1 2 3 4
2 3 4 1

)

,

(

1 2 3 4
3 4 1 2

)

,

(

1 2 3 4
4 3 2 1

)

,

(

1 2 3 4
2 1 4 3

)

,

(

1 2 3 4
3 2 1 4

)

,

(

1 2 3 4
4 3 2 1

)

,

(

1 2 3 4
1 4 3 2

)}

so |D4| = 8 is a permutation group, but is not all of S4 since
|S4| = 4! = 24.
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