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Even vs. Odd Permutations

Last time we learned that any σ ∈ Sn can be decomposed into a product
of disjoint cycles:

σ = σ1σ2 . . . σm

and that this decomposition is unique except for the order in which we
write these cycles since they commute, and the fact that each cycle itself
can be written in a number of equivalent ways depending on the first
number in the cycle

i .e. (1, 2, 3) = (2, 3, 1) = (3, 1, 2)

so that, for example

(1, 2, 3)(4, 5) = (2, 3, 1)(4, 5) = (3, 1, 2)(4, 5) = (4, 5)(1, 2, 3) = ...etc .
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Beyond the decomposition of a permutation into disjoint cycle, a
permutation can be represented in terms of more fundamental building
blocks.

Definition

A 2-cycle in Sn is called a transposition.

So for example, (1, 2) ∈ S3 is a transposition.

The significance of these is that one can build up a permutation by viewing
it as a sequence of ’swaps’, that is, as a sequence of transpositions.

Note that (a, b) = (b, a).
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For perspective, consider the the fact that all sorting algorithms one
encounters in computer science, are built upon the pairwise comparison of
elements in a list (of numbers for example) that one wishes to put into
sorted order.

As such, if two elements are out of order, we swap their positions in the
list, and repeat this as many times as needed, to restore the list to its
correct ordering.

For a permutation, the idea is inverted in the sense that we view a given
permutation as the shuffling of the list into a given arrangement by a
sequence of swaps, i.e. by a sequence of transpositions.

The one key difference is that in this sequence of transpositions, the same
element may be moved several times, i.e. as cycles, these won’t generally
be disjoint.
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Theorem

Every permutation in Sn can be written as a product of (not necessarily
disjoint) transpositions.

PROOF: We first start with this (simple yet important) fact about
k-cycles:

(i1, i2, . . . , ik) = (i1, ik)(i1, ik−1) · · · (i1, i2)

which looks a bit puzzling, but can be understood by looking at an
example:

(3, 4, 5, 7) = (3, 7)(3, 5)(3, 4)

i.e. Follow how each element of {3, 4, 5, 7} is moved by the three
transpositions.
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PROOF (continued):

So if σ = σ1 · · · σm, a product of disjoint cycles, then by the above fact we
examined, each of these cycles σi can be, in turn, written as a product of
transpositions.

So overall, σ can therefore be written as a (possibly large) collection of
transpositions.

For example
(1, 6)(1, 2)
︸ ︷︷ ︸

(1,2,6)

(3, 7)(3, 5)(3, 4)
︸ ︷︷ ︸

(3,4,5,7)
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We note a number of facts about this theorem.

I = () can be written as (1, 2)(1, 2) so it too is a product of
transpositions.

The decomposition of σ ∈ Sn into a product of transpositions is far
from unique.

For example (3, 4, 5, 7) = (3, 7)(3, 5)(3, 4) =
(1, 2)(3, 7)(3, 5)(3, 4)(1, 2) = (3, 7)(3, 6)(3, 5)(5, 6)(3, 4).

So the number of ways of writing a permutation as a product of
transpositions isn’t unique, but the following is true.

Theorem

A permutation σ ∈ Sn may be written as a product of an even number of
transpositions, or an odd number, but not both.

So the ’even’ or ’odd’ property is one thing that is characteristic of such a
representation.
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The proof of this is very interesting and uses a bit of linear algebra.
PROOF: Let X = {~e1,~e2, . . . ,~en} be the columns of the n× n (real)
identity matrix

I =








1 0 . . . 0
0 1 . . . 0
...

... . . . 0
0 0 . . . 1








=
(
~e1 ~e2 . . . ~en

)

As such, Perm(X ) ∼= Sn = Perm({1, . . . , n}) where σ ∈ Sn acts on the
column vectors in X = {~e1, . . . ,~en} by shuffling the indices, i.e.
σ(~ei ) = ~eσ(i).

Thus, σ(I ) is some other n × n matrix obtained by permutating the
columns of I .
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PROOF (continued): So if τ = (i , j) ∈ Sn then since det(I ) = 1 then
det(τ(I )) = −1 by basic facts we know about how the determinant is
affected by column swaps.

As such, if σ = (i1, j1)(i2, j2) · · · (ir , jr ) (a product of r transpositions) then
det(σ(I )) = (−1)r .

If one also writes σ = (i ′1, j
′

1)(i
′

2, j
′

2) · · · (i
′

s , j
′

s) (a product of s
transpositions) then we must have that det(σ(I )) = (−1)s .

Thus we must have (−1)r = (−1)s which means that r and s must both
be even or both odd.
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Definition

For σ ∈ Sn define the signature of σ to be sgn(σ) = (−1)r if σ can be
written as product of r transpositions.

We observe that this is well defined no matter what number of
transpositions σ can be decomposed into, it’s always either an even or odd
number.

As such sgn : Sn → {±1} is a well defined function, but it also has other
properties.

First, we can point out that {±1} = {1,−1} is a group under
multiplication. (Exercise!)

Moreover, (although not a critical observation here) {±1} ∼= Z2.
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We also note the following important fact about sgn.

Proposition

sgn : Sn → {±1} is a homomorphism of groups, that is
sgn(σ1σ2) = sgn(σ1)sgn(σ2) for all σ1, σ2 ∈ Sn.

Proof.

If σ1 is a product of r1 transpositions and σ2 is a product of r2
transpositions, then σ1σ2 is a product of r1 + r2 transpositions. (Why?)
Thus sgn(σ1) = (−1)r1 and sgn(σ2) = (−1)r2 so

sgn(σ1σ2) = (−1)r1+r2 = (−1)r1(−1)r2 = sgn(σ1)sgn(σ2)

which is the homomorphism property asserted.
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Definition

We call σ ∈ Sn even if sgn(σ) = 1 or odd if sgn(σ) = −1.

The even property gives rise to an important class of subgroups.

Definition

For n > 1, the nth alternating group is An = {σ ∈ Sn | sgn(σ) = 1}.

We note that this is a subgroup via the homomorphism property stated
above, since if sgn(σ1) = 1 and sgn(σ2) = 1 then sgn(σ1σ2) = 1 as well.
Moreover, sgn(σ) = 1 implies that sgn(σ−1) = 1 too. (Exercise).
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How big is An?

Proposition

|An| =
n!
2 for each n ≥ 2.

Proof.

Consider Ān = Sn − An (i.e. the set difference) and, assuming n > 1, we have
that (1, 2) ∈ Ān.
If we define f : An → Ān by f (σ) = (1, 2)σ where (1, 2)σ is in Ān if σ ∈ An

since then sgn((1, 2)σ) = sgn((1, 2))sgn(σ) = (−1) · 1 = −1.
Now, if (1, 2)σ = (1, 2)τ then σ = τ which implies that f is 1-1.
We can also show that f is onto since if µ ∈ Ān then
µ = (1, 2)(1, 2)µ = (1, 2)[(1, 2)µ] = f ((1, 2)µ) where (1, 2)µ ∈ An.

Thus |An| = |Ān| and since Sn = An ∪ Ān and An ∩ Ān = ∅ then
|Sn| = 2|An|.
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We saw that D4 may be viewed as a subgroup of S4 and that it was exactly
those 8 elements that are permissible as plane symmetries of the square.

If we look at figures in space, such as the regular tetrahedron:

then we can consider the symmetries in space which consists of basically
any permutations of the figure which don’t distort or ’tear’ it.
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For the tetrahedron, these consist of all the permutations that lie in A4 as
it turns out.

And one of the reasons it’s no larger is that, for example, (1, 2) is not
possible since (with the 3− 4 side fixed) the permutation (1, 2) would tear
it!

And similarly, no other single transposition is permitted, nor is any other
odd permutation.
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One other observation we can make about even vs. odd permutations
(which touches on the proof we gave about a given permutation being
representable as only a product or even or odd number of transpositions) is
about the formulation of the determinant in terms of the ’parity’ of a
permutation.

Fact: (Leibniz) For an n × n matrix A = (aij) one can show that

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n)

which is quite a bit different than the typical formulation (Laplace
expansion) in terms of summing over the determinants of the
n − 1× n − 1 submatrices.
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This formula

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n)

is a bit challenging to work with, but does satisfy all the formulas that a
determinant function should satisfy: alternation, n-linearity, det(I ) = 1.

One of these is really easy to check, and that is the fact that det(I ) = 1.

To see this, realize that if A = I then aii = 1 while aij = 0 for i 6= j and so
aiσ(i) = 1 only if σ(i) = i and so in each term

a1σ(1)a2σ(2) · · · anσ(n)

the result will be zero unless σ is the identity element, thus
det(I ) = sgn(identity)a11a22 · · · ann = 1.
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Kernels

If we look back to the properties of sgn and the definition of An we are led
to an important class of subgroups of a group.

Definition

A function f : (G1, ∗1) → (G2, ∗2) is a group homomorphism if
f (a ∗1 b) = f (a) ∗2 f (b).

which should be familiar from the definition of isomorphism given earlier,
but here we are not assuming that f is one-to-one or onto, indeed it need
not be.
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As we saw earlier, the function sgn : Sn → {±1} is an example of a
homomorphism.

Another fundamental example is ρ : Z → Zm (for any m > 1) given by
ρ(a) = r if a = qm + r for r ∈ {0, . . . ,m − 1} coming from the division
algorithm.

Yet another example is the determinant det : GLn(R) → R
∗ where R

∗ is
the group of non-zero real numbers under multiplication.
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From a homomorphism between two groups, we can construct a
fundamental subgroup one obtains.

Definition

For a group homomorphism f : (G1, ∗1) → (G2, ∗2), the kernel is
Ker(f ) = {a ∈ G1 | f (a) = e2} where e2 is the identity of G2.

The fundamental property to check is this.

Proposition

For a group homomorphism f : (G1, ∗1) → (G2, ∗2), the kernel Ker(f ) is a
subgroup of G1.
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As to examples, consider the one we saw earlier, namely An since σ ∈ An

iff sgn(σ) = 1 ∈ {±1} where 1 is the identity of {±1}.

For the ’remainder’ homomorphism ρ : Z → Zm we saw earlier,
Ker(ρ) = {a ∈ Z | ρ(a) = 0} namely those a ∈ Z for which m divides a
exactly, ergo Ker(ρ) = mZ.
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