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Orbits and Stabilizers

Symmetric groups also help us solve certain combinatorial (counting)
problems.

Let X be a finite set and G ≤ Perm(X ) and define an equivalence relation
∼ on X as follows:

x ∼ y if g(x) = y for some g ∈ G

Let’s verify this is an equivalence.
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x ∼ x since e(x) = x for e ∈ G the identity element which fixes every
element of X

If x ∼ y then g(x) = y for some g ∈ G , but then
x = g−1(g(x)) = g−1(y), i.e. g−1(y) = x so y ∼ x

If x ∼ y and y ∼ z then g(y) = x and g ′(z) = y which means
g(g ′(z)) = x , i.e. (g ◦ g ′)(z) = x so z ∼ x
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Definition

For this equivalence relation, the equivalence classes are called the orbits
with respect to the action of G on X .

Specifically, for x ∈ X , let Gx = {g(x) | g ∈ G} where, if
G = {g1, . . . , gn} is literally {g1(x), g2(x), . . . , gn(x)}

Note, it is possible that gi (x) = gj(x) for two distinct elements gi , gj ∈ G ,
including the possibility that g(x) = x for some g ∈ G where g 6= e.

Timothy Kohl (Boston University) MA294 Lecture March 7, 2024 4 / 24



Example: G = {(), (1, 2)(3, 4, 5), (3, 5, 4), (1, 2), (1, 2)(3, 5, 4), (3, 4, 5)}

G1 = {1, 2}

G2 = {1, 2}

G3 = {3, 4, 5}

G4 = {3, 4, 5}

G5 = {3, 4, 5}

and we see here another phenomenon, namely that Gx = Gy even when
x 6= y .
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Of particular importance for applications is the determination of |Gx | for
each x ∈ X .

Definition

For G ≤ Perm(X ), and x , y ∈ X let

G (x → y) = {g ∈ G | g(x) = y}

and for x = y we have

G (x → x) = {g ∈ G | g(x) = x}

where G (x → x) is the stabilizer of x in G , which we also denote Gx .
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Note, for any x ∈ X , we have Gx ≤ G .

Why? If g1, g2 ∈ Gx then (g1 ◦ g2)(x) = g1(g2(x)) = g1(x) = x , and if
g(x) = x then g−1(g(x)) = g−1(x), that is x = g−1(x) and thus
g−1 ∈ Gx too.
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We observed that Gx = G (x → x) is a subgroup of G for each x ∈ X , so
what about G (x → y) for x 6= y?

Theorem

Let G ≤ Perm(X ) and let h ∈ G (x → y) then

G (x → y) = hGx

a left coset of Gx in G .

Proof.

If g ∈ Gx and h(x) = y then (h ◦ g)(x) = h(g(x)) = h(x) = y so that
h ◦ g ∈ G (x → y) so hGx ⊆ G (x → y).

If h ∈ G (x → y) then h = (h ◦ e) ∈ hGx since certainly e ∈ Gx and so
G (x → y) ⊆ hGx , so G (x → y) = hGx .
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As a consequence we have the following really fundamental fact about
permutation groups, called the Orbit-Stabilizer Theorem.

Theorem

If G ≤ Perm(X ) then |Gx | = [G : Gx ] =
|G |
|Gx |

.

Proof.

The basic idea is that if Gx = {y1, . . . , ym} then
G (x → yi ) ∩ G (x → yj) = ∅ for i 6= j and G (x → yi ) = hiGx for distinct
{h1, . . . , hm} where G = h1Gx ∪ h2Gx ∪ · · · ∪ hmGx .

But this says that ’m’ which is |Gx | is the same as the number of distinct

cosets of Gx in G , that is [G : Gx ] where [G : Gx ] =
|G |
|Gx |

.
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Example: G = 〈(1, 2)(3, 4, 5)〉 =
{(), (1, 2)(3, 4, 5), (3, 5, 4), (1, 2), (1, 2)(3, 5, 4), (3, 4, 5)}

|G1| = 2 ↔ G1 = 〈(3, 4, 5)〉 ↔ [G : G1] =
6
3 = 2

|G3| = 3 ↔ G3 = 〈(1, 2)〉 ↔ [G : G3] =
6
2 = 3

The main point of this theorem is that one may determine |Gx | (which may
not be easy to find) by using Gx which is generally easier to determine.
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For a given G ≤ Perm(X ) a related question that is also important is to
find out how many distinct orbits there are.

For example, with G = 〈(1, 2)(3, 4, 5)〉, we saw that G1 = {1, 2},
G2 = {1, 2} while G3 = {3, 4, 5}, G4 = {3, 4, 5}, and G5 = {3, 4, 5} as
well.

Definition

For G ≤ Perm(X ) and g ∈ G , let F (g) = {x ∈ X | g(x) = x} which are
the set of those elements of G which fix x .
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Theorem (Frobenius)

For G ≤ Perm(X ) the number of orbits of G on X is

1

|G |

∑

g∈G

|F (g)|

which is a whole number.

Before exploring the proof, we should mention that this result is actually
the tool that we will use for solving different combinatorial (counting)
problems.

It is built on the Orbit-Stabilizer Theorem, but is different in that it
actually tells us how many distinct orbits there are, which is actually a bit
more mysterious than the size of the orbit of a particular element of x .

This theorem is telling us a *lot* about the action of G on X overall.
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PROOF:
Consider the following subset of G × X

E = {(g , x) | g(x) = x}

whose size we will compute in two different ways, and these two ways of
counting will give us the statement of the theorem.

If G = {g1, . . . , gn} and X = {x1, . . . , xr} then E = Eg1 ∪ · · · ∪ Egn where

Egi = {(gi , x) ∈ G × X | (gi (x) = x}

where the Egi are disjoint, and, for some gi , potentially empty.
Moreover, it’s clear that Egi = F (gi ).
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So we have that |E | =
∑n

i=1 |F (gi )|.

Another way to view E is as follows:

E = Ex1 ∪ Ex2 ∪ · · · ∪ Exr

where Exj = {(g , xj ) ∈ G × X | g(xj ) = xj} and so |Exj | = |Gxj | (!), so we
have that

|E | =
r

∑

j=1

|Gxj |
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So if {x11, . . . , x1e1}, {x21, . . . , x2e2},...,{xt1, . . . , xtet} are the distinct
orbits of G on X , namely t orbits, where the size of the i th orbit is ei .

As such |Gxij | = ei for i = 1, . . . , t and j = 1, . . . , et , so
|G |
|Gxij

| = ei and so

|Gxij | =
|G |
ei

for i = 1, . . . , t.

Thus

∑

x∈X

|Gx | = e1
|G |

e1
+ e2

|G |

e2
+ · · ·+ et

|G |

et

= t|G |

and so...
∑

g∈G |F (g)| =
∑

x∈X |Gx | = t|G | which means

t =
1

|G |

∑

g∈G

|F (g)|

as claimed.
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Applications to Counting

Say 6 beads are strung together in circle, where 3 are red, and 3 are blue.

For example:
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We shall consider all of these equivalent configurations:

And all of these can be considered in the same orbit with resepct to the
action of D6 since the positions of the beads can be viewed as at the
corners of a hexagon. (We see the effect of ’rotating’ in 60 degree
increments, but even if we include the ’flips’ of the hexagon, the result is
an orbit with six configurations above.)
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However, these two configurations are not in the same orbit:

This can be seen by realizing that no flip or rotation will change the fact
that the colors in one configuration alternate, whereas in the other they
are clustered together.
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What we want is to count how many distinct orbits there are with respect
to the action of D6.

We will utilize the previous theorem, namely we will determine |F (g)| for
each g ∈ D6.

First, we need to consider how many total configurations of 3 blue and 3
red beads there are, before we can subdivide them into orbits.

Since there are 6 beads total, and by choosing 3 red ones, we also
determine which are blue then we have

(

6
3

)

=
6!

3! · 3!
= 20

configurations total.
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For the ’hexagon’ of vertices, we define
D6 = {r0, r60, r120, r180, r240, r300, f(1,2), f(2,3), f(3,4), f(1,4), f(2,5), f(3,6)}

1

23

4

5 6

So we shall compute |F (g)| for each g ∈ D6.

|F (r0)| = 20 Why? Well the identity obviously fixes every configuration.

|F (r60)| = 0 Why? Well no matter how the six beads are distributed, a
60◦ rotation will change at least one position from red to blue.
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1

23

4

5 6

|F (r120)| = 2 Why? Well, a 120◦ rotation pushes every bead forward two
positions, so the question is whether there is a way to distribute the beads
so that a two position turn leaves the colors unchanged. Yes.

In a similar way we find that |F (r180)| = 0, |F (r240)| = 2, |F (r300)| = 0.

So what about flips?
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1

23

4

5 6

|F (f(1,2))| = 0 Why? Consider these arrangements.

i.e. The distribution of colors on either side of the line will never be the
same after the flip.
In a similar way, we find that flips about a line passing through opposite
sides of the hexagon leave no configurations unchanged, i.e.
|F (f(2,3))| = 0, and |F (f(3,4))| = 0,
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1

23

4

5 6

For the flips through lines connecting opposite vertices, f(1,4), f(2,5) and
f(3,6) the behavior is different.
|F (f(1,4))| = 4, here they are.

And similarly |F (f(2,5))| = 4 and |F (f(3,6))| = 4.

Timothy Kohl (Boston University) MA294 Lecture March 7, 2024 23 / 24



So, in the final analysis, the number of orbits is

1

12

(

20 + 2 + 2 + 4 + 4 + 4

)

=
1

12
(36) = 3

which are the orbits of these ’distinct’ configurations:
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