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Rings, Fields and Polynomials

Beyond groups, there are other algebraic systems which are fundamental
to many areas of pure and applied mathematics.

Definition

A ring is a set R together with two binary operations + (addition) and ·
(multiplication) which satisfy the following properties.

(R ,+) is an abelian group, i.e. 0 ∈ R , addition is associative and
commutative and for every a ∈ R , there exists −a ∈ R such that
a + (−a) = 0

R is closed under ·, and · is associative, namely (a · b) · c = a · (b · c).
For a, b, c ∈ R , one has a · (b + c) = a · b + a · c and
(b + c) · a = b · a + c · a (i.e. the distributive law holds)
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The most fundamental examples we can give involve the integers, or
variations thereof.
For example (Z,+, ·) the integers with the usual addition and
multiplication are a ring.

And, as we saw early on, (Zm,+, ·) namely the integers mod m (for
m > 1) with addition and multiplication mod m are all rings.

Note, another example, although of a slightly different characters is
(2Z,+, ·) which is the set of even integers under ordinary addition and
multiplication.

This last example is a bit different than Z in one important way, which we
shall discuss in the next slide.
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Note:

If R has an element 1 such that a · 1 = a and 1 · a = a we say that R
is a ring with unity and most of the rings we will consider will be rings
with unity. So for example Z is a ring with unity, but 2Z is a ring
without unity.

Even if R is a ring with unity, (R , ·) can never be a group as not all
elements will have mulitplicative inverses, i.e. there may be a ∈ R
such that for no b do we have a · b = 1, principally a = 0!

Notationally, we will eventually suppress the ’·’ and write a product
like a · b as simply ab.

The multiplication in R need not be commutative, and indeed there
are important examples of rings with a non-commutative
multiplication, namely there are elements a, b such that ab 6= ba.

If ab = ba for all a, b ∈ R we call R a commutative ring.
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Speaking of non-commutative rings, here is a prime example.

Definition

For M2(R) = {
(

a b
c d

)

| a, b, c , d ∈ R} let addition be defined by:

(

a1 b1
c1 d1

)

+

(

a2 b2
c2 d2

)

=

(

a1 + a2 b1 + b2
c1 + c2 d1 + d2

)

and multiplication be defined by

(

a1 b1
c1 d1

)(

a2 b2
c2 d2

)

=

(

a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
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In linear algebra one learns that for A,B ,C ∈ M2(R)

A+ B = B + A

A+ (B + C ) = (A + B) + C

0 =

(

0 0
0 0

)

is the additive identity

A =

(

a b
c d

)

↓

−A =

(

−a −b
−c −d

)

is the additive inverse
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So we have the following.

Proposition

M2(R) is a ring with unity where the matrix

(

0 0
0 0

)

is the additive

identity, and I =

(

1 0
0 1

)

is the mulitplicative identity (unity).

Note: For rings, we don’t use the term ’abelian’ or ’non-abelian’ but rather
commutative, or non-commutative.

Before going further, we mention a few basic facts about rings, which arise
from their definition.
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Properties of Rings

Let R be a ring, and let a, b, c ∈ R .

1 a · 0 = 0 · a = 0

2 a · (−b) = (−a) · b = −(a · b)
3 (−a) · (−b) = ab

4 If we define b − c to mean b + (−c) then a · (b − c) = a · b − a · c
and (b − c) · a = (b · a − c · a). If R has unity 1 then

5 (−1) · a = −a

6 (−1) · (−1) = 1

Let’s examine some of these.
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FACT 1: a · 0 = 0 and 0 · a = 0
PROOF: Consider a · (0 + 0) = a · 0 + a · 0 by the distributive law, but
since 0 is the additive identity, 0 + 0 = 0 so we have

a · 0 = a · 0 + a · 0

and if −a · 0 is the additive inverse of a · 0 (which exists) then

a · 0 = a · 0 + a · 0
↓

a · 0 + (−a · 0) = a · 0 + a · 0 + (−a · 0)
↓

0 = a · 0 + 0

↓
0 = a · 0
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FACT 3 (−a) · (−b) = ab
Going forward, let’s drop the ’·’ for multiplication unless we need it!

PROOF: Consider (−a + a)(−b) which equals 0(−b) which is 0 by FACT
1.
However it also equals (−a)(−b) + a(−b) but by FACT 2, a(−b) = −(ab)
so we have

(−a)(−b) + (−(ab)) = 0

↓
(−a)(−b) = ab

The other facts are left for exercises.
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Now, we discussed 2× 2 matrices in the discussion of the group GL2(R)
and this has some bearing on the structure of M2(R) as a ring.

We saw that δ = det

(

a b
c d

)

= ad − bc characterizes whether the matrix

is invertible, namely when δ 6= 0.
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For example A =

[

1 2
2 4

]

does not have matrix inverse since det(A) = 0,

or more directly
[

1 2
2 4

] [

a b
c d

]

=

[

1 0
0 1

]

implies

a + 2c = 1

b + 2d = 0

2a + 4c = 0

2b + 4d = 1

which is impossible.
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Definition

For ring R , an element x ∈ R is invertible (or a unit) if there exists y ∈ R
such that xy = 1 and yx = 1.

We have seen that the invertible elements of Zm, namely U(m) are a
group, as is GL2(R) mentioned above. In general we have:

Definition

For a ring R with unity, the units U(R) are a group with respect to the
multiplication in R .

We note that this touches back on the comment earlier that (R , ·) is not a
group, and it isn’t a group, because not every element has a multiplicative
inverse, which is quantified by the group U(R).
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Examples:

R = Zm → U(R) = U(m)

R = Z → U(R) = {±1} (Why?)

R = Q (the rationals) implies that U(R) = Q∗, namely the non-zero
elements of Q.

R = M2(R) → U(R) = GL2(R).

Timothy Kohl (Boston University) MA294 Lecture March 19, 2024 14 / 21



Note: The case of U(Q) = Q∗, namely that all non-zero elements are
units, leads to an important class of rings.

Definition

A commutative ring F is a field if U(F ) = F ∗ = F − {0}, namely that all
non-zero elements of F are invertible.

As we mentioned earlier, in a ring, 0 is never invertible, the reason is that,
one can show that in any ring ring 0r = 0 for any r ∈ R .

So for a field, F we have that U(F ) is as big as it can possibly be.
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Here are some fundamental examples of rings.

Q, the rational numbers, e.g. 1, −2, 1
3 , etc.

R, the real numbers, namely the rationals plus irrationals like π, e,√
2 etc.

C = {a + bi | a, b ∈ R; i2 = −1}, the complex numbers where
(a + bi) + (c + di) = (a + c) + (b + d)i
and (because i2 = −1) (a + bi)(c + di) = (ac − bd) + (ad + bc)i
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If z = a + bi ∈ C where (a, b) 6= (0, 0) (i.e. not the zero element of C)
then we have

1

a+ bi
=

1

a + bi

a − bi

a − bi

=
a − bi

a2 + b2

=
a

a2 + b2
+

−b

a2 + b2
i

where (since a, b ∈ R are not both zero) we have that a2 + b2 > 0 and so

a

a2 + b2
+

−b

a2 + b2
i ∈ C

which means every non-zero element of C has a multiplicative inverse,
which confirms that C is a field.
In all of these examples, the field is infinite in size.
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However, there is another important class of examples, namely Zp for p
prime since

U(Zp) = U(p) = {1, 2, . . . , p − 1} = Zp − {0}

so that Zp are all ’finite fields’.

This includes also, the tiny, yet important example, Z2 which is essential
to many applications, as we shall see.
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Note: For any field F one may construct the ring of (2× 2) matrices over

M2(F ) = {
(

a b
c d

)

| a, b, c , d ∈ F}

and similarly consider GL2(F ) = U(M2(F )).

And for finite fields like Z2 these can be computed without too much
effort since, if you recall from linear algebra, a matrix M is invertible if the
columns of M form a basis, so for 2 matrices, this would be a basis of F 2.
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Recall that the zero vector

(

0
0

)

is never part of a basis, and for a two

dimensional vector space, a basis consists of two vectors {~v1, ~v2} where ~v2
is not a scalar multiple of ~v1.

So we have 3 choices for ~v1 =

(

a
c

)

and therefore 2 choices for ~v2 =

(

b
d

)

.

GL2(Z2) =

{(

1 0
0 1

)

,

(

1 1
0 1

)

,

(

0 1
1 0

)

,

(

0 1
1 1

)

,

(

1 1
1 0

)

,

(

1 0
1 1

)}
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So GL2(Z2) has six elements and is a non-abelian group, and, in fact, one
can show that GL2(Z2) ∼= S3.

Another way to prove this, would be do write down all 24 = 16 matrices of
size 2× 2 with entries from Z2 and remove those whose determinant is
zero and the remaining matrices would be exactly the six shown on the
previous slide.

Timothy Kohl (Boston University) MA294 Lecture March 19, 2024 21 / 21


