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Fields from Matrices

Definition

Let S2(R) = {

(

x y

−y x

)

| x , y ∈ R} ⊆ M2(R).

Observe that
(

x1 y1
−y1 x1

)

+

(

x2 y2
−y2 x2

)

=

(

x1 + x2 y1 + y2
−(y1 + y2) x1 + x2

)

(

x1 y1
−y1 x1

)(

x2 y2
−y2 x2

)

=

(

x1x2 − y1y2 x1y2 + x2y1
−(x1y1 + x2y1) x1x2 − y1y2

)
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Also note that

(

0 0
0 0

)

and

(

1 0
0 1

)

are in S2(R) so S2(R) is a ring.

Note also, that the elements in S2(R) commute.

Moreover, note that det

(

x y

−y x

)

= x2 + y2 which means that every

every non-zero element (matrix) in S2(R) is invertible.
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So it seems that S2(R) is a field, and indeed it is, in fact S2(R) ∼= C where
the bijection is

ψ :

(

x y

−y x

)

7→ x + iy

which respects the addition and multiplication.

i.e. ψ(M + N) = ψ(M) + ψ(N) and ψ(MN) = ψ(M)ψ(N).
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What’s also intriguing is that this construction can be done for finite
fields, namely S2(Zp) where the matrix elements come from Zp instead of
R, that is:

S2(Zp) = {

(

x y

−y x

)

| x , y ∈ Zp} ⊆ M2(Zp)

where all the comments about the case for R work here too.. except for
one issue.

Recall that det

(

x y

−y x

)

= x2 + y2, which was zero (for the case of R)

when x = y = 0, however, in Z5 for example, 12 + 22 = 5 ≡ 0 (mod 5) so

that

(

1 2
−2 1

)

is a non-zero element which is non-invertible since det = 0,

so S2(Z5) is not a field.
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However, S2(Z3) is a field (with 9 elements) as is S2(Z7) (which has 49
elements).

As it turns out S2(Zp) is a field if and only if p ≡ 3 (mod 4).
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We saw earlier the definition of the complex numbers:

C = {a + b i | a, b ∈ R, i2 = −1}

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

(0 + 0i) + (a + bi) = a + bi

(1 + 0i)(a + bi) = a + bi

where, in particular, the multiplication is keyed to the fact that i2 = −1.
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Moreover, C can also be viewed as a vector space in that every z ∈ C is of
the form z = a + bi = a · 1 + b · i .

i.e. every element of C is a linear combination of {1, i}

This begs the question as to whether one could generalize this idea, and
indeed there is, but there are some startling contrasts in comparison to C.
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The Quaternions (Hamiltonians) as a set is

H = {a + bi + cj + dk | a, b, c , d ∈ R}

namely linear combinations of {1, i , j , k} (so that H is additively just like
the vector space R4) but where the i , j , k have the following properties:

1 · i = i , 1 · j = j , 1 · k = k

i2 = j2 = k2 = −1

ij = k , jk = i , ki = j

ji = −k , kj = −i , ik = −j

where a product (a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) is expanded
out and simplified according to the rules governing 1, i , j , and k as above.
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One may (with some effort!) verify that H is a ring, with additive identity
0 + 0i + 0j + 0k and multiplicative identity 1 + 0i + 0j + 0k .

The other properties (such as associativity) are messy to check, but do
hold.

One of the principal observations is that H is a non-commutative ring,
which stems of course from the rules governing how the ’basis’ elements
are multiplied.
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The similarity to C is obvious in that j and k are two other ’square roots
of −1’ but what is a lso interesting is the following similarity with C which
we’ll discuss in more generality later.

If z = a + bi ∈ C where (a, b) 6= (0, 0) we saw that

z−1 =
a

a2 + b2
+

−b

a2 + b2
i ∈ C

which means that C is a field.
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In a similar way although requiring a bit more work :-),one may show that
every non-zero h = a + bi + cj + dk ∈ H has a multiplicative inverse as
well.

However, as H is non-commutative, we use the term division ring to
characterize H.

We’ll talk more about fields later on.
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Polynomials

Definition

If R is a commutative ring and x a variable, the polynomial ring R [x ] is the set
of all expressions of the form

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

where n ≥ 0 is an integer, and each ai ∈ R , where if an 6= 0 we say
deg(f ) = n. Addition is defined degree by degree, namely

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x + b0

↓ assuming n ≥ m

f (x) + g(x) = (an + bn)x
n + (an−1 + bn−1)x

n−1 + · · · + (a1 + b1)x + (a0 + b0)

where for t > m we view bt = 0.
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Definition

Multiplication is as follows:

f (x)·g(x) = (anbm)x
n+m+· · ·+(a0b2+a1b1+a2b0)x

2+(a0b1+a1b0)x+a0b0

.Also 0 (i.e. the constant polynomial) is the additive identity and 1 ∈ R is
the multiplicative identity.

If f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 (i.e. an = 1) then we say f (x) is

a monic polynomial.

We also note that if R is Z or a field like Q, R, C or even Zp then

deg(f (x) + g(x)) ≤ max{deg(f (x)), deg(g(x))}

deg(f (x) · g(x)) = deg(f (x)) + deg(g(x))
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If R = Zm for m not a prime then it is possible to have
deg(f (x) · g(x)) ≤ deg(f (x)) + deg(g(x)).

For example, in Z6[x ] we have

(3x2 + 2x + 1)(2x2 + 1) = 6x4 + 4x3 + 2x2 + 3x2 + 2x + 1

= 4x3 + 5x2 + 1

where this happened because the product of the leading coefficients ’3’
and ’2’ equals 6 ≡ 0 in Z6.

Indeed, this is more a point about the arithmetic in Z6 since for the two
non-zero elements 2 and 3, their product 2 · 3 is zero in Z6.

In contrast, this never happens in Zp. (More on this later.)
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Polynomial Long Division

Just as one can divide one integer by another to yield a unique quotient
and remainder. The same holds true for the ring F [x ] for any field F .

Theorem

The Division Algorithm for F [x ]

Let F be a field and let f (x), g(x) ∈ F [x ] where g 6= 0 then there exists

unique q(x), r(x) ∈ F [x ] such that

f (x) = q(x)g(x) + r(x)

where either r(x) = 0 or deg(r(x)) < deg(g(x)).
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Proof:

Assume that deg(f (x)) ≥ deg(g(x)) otherwise, having
f (x) = q(x)g(x) + r(x) would imply that q(x) = 0 and r(x) = f (x).

Assuming this, then we use an ’inductive’ argument keyed to the degree of
f (x).

If deg(f (x)) = 1 then f (x) = ax + b so g(x) = c (a constant) and
therefore ax + b = ( a

c
x)c + b so q(x) = ( a

c
x) and r(x) = b, i.e.

deg(r(x)) = 0.
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Proof (continued)

If

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x + b0

where an 6= 0 and bm 6= 0 then m < n so let t = n−m and define
q1(x) = ctx

t where ct =
an
bm

.

Then

q1(x)g(x) = (bm
an

bm
)xn + . . .

= anx
n + . . .

which means deg(f (x) − q1(x)g(x)) < n so by induction we may assume
the theorem holds for f (x) − q1(x)g(x).
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So there exists polynomials q2(x) and r(x) such that
f (x) − q1(x)g(x) = q2(x)g(x) + r(x) which means

f (x) = (q2(x) + q1(x))g(x) + r(x) = q(x)g(x) + r(x)

i.e. q(x) = q1(x) + q2(x) so that indeed, we have a quotient ’q(x)’ and a
remainder ’r(x)’ so that f (x) = q(x)g(x) + r(x).
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Proof (continued)

The last part to check is that if f (x) = q(x)g(x) + r(x) and
f (x) = q̃(x)g(x) + r̃(x) that q̃(x) = q(x) and r̃(x) = r(x).

But this implies that

f (x) − f (x) = (q(x)g(x) + r(x))− (q̃(x)g(x) + r̃(x))

= (q(x)− q̃(x))g(x) + (r(x)− r̃(x))

but f (x) − f (x) = 0 so, by degree considerations q(x)− q̃(x) = 0 and
r(x)− r̃(x) = 0 so q(x) = q̃(x) and r(x) = r̃(x).
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