MA294 Lecture

Timothy Kohl

Boston University

March 21, 2024

Fields from Matrices

Definition

Let $S_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right) \right\rvert\, x, y \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R})$.

Observe that

$$
\begin{aligned}
\left(\begin{array}{cc}
x_{1} & y_{1} \\
-y_{1} & x_{1}
\end{array}\right)+\left(\begin{array}{cc}
x_{2} & y_{2} \\
-y_{2} & x_{2}
\end{array}\right) & =\left(\begin{array}{cc}
x_{1}+x_{2} & y_{1}+y_{2} \\
-\left(y_{1}+y_{2}\right) & x_{1}+x_{2}
\end{array}\right) \\
\left(\begin{array}{cc}
x_{1} & y_{1} \\
-y_{1} & x_{1}
\end{array}\right)\left(\begin{array}{cc}
x_{2} & y_{2} \\
-y_{2} & x_{2}
\end{array}\right) & =\left(\begin{array}{cc}
x_{1} x_{2}-y_{1} y_{2} & x_{1} y_{2}+x_{2} y_{1} \\
-\left(x_{1} y_{1}+x_{2} y_{1}\right) & x_{1} x_{2}-y_{1} y_{2}
\end{array}\right)
\end{aligned}
$$

Also note that $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are in $S_{2}(\mathbb{R})$ so $S_{2}(\mathbb{R})$ is a ring.
Note also, that the elements in $S_{2}(\mathbb{R})$ commute.
Moreover, note that $\operatorname{det}\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)=x^{2}+y^{2}$ which means that every every non-zero element (matrix) in $S_{2}(\mathbb{R})$ is invertible.

So it seems that $S_{2}(\mathbb{R})$ is a field, and indeed it is, in fact $S_{2}(\mathbb{R}) \cong \mathbb{C}$ where the bijection is

$$
\psi:\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right) \mapsto x+i y
$$

which respects the addition and multiplication.
i.e. $\psi(M+N)=\psi(M)+\psi(N)$ and $\psi(M N)=\psi(M) \psi(N)$.

What's also intriguing is that this construction can be done for finite fields, namely $S_{2}\left(\mathbb{Z}_{p}\right)$ where the matrix elements come from \mathbb{Z}_{p} instead of \mathbb{R}, that is:

$$
S_{2}\left(\mathbb{Z}_{p}\right)=\left\{\left.\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}_{p}\right\} \subseteq M_{2}\left(\mathbb{Z}_{p}\right)
$$

where all the comments about the case for \mathbb{R} work here too.. except for one issue.

Recall that $\operatorname{det}\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)=x^{2}+y^{2}$, which was zero (for the case of \mathbb{R}) when $x=y=0$, however, in \mathbb{Z}_{5} for example, $1^{2}+2^{2}=5 \equiv 0(\bmod 5)$ so that $\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$ is a non-zero element which is non-invertible since $d e t=0$, so $S_{2}\left(\mathbb{Z}_{5}\right)$ is not a field.

However, $S_{2}\left(\mathbb{Z}_{3}\right)$ is a field (with 9 elements) as is $S_{2}\left(\mathbb{Z}_{7}\right)$ (which has 49 elements).

As it turns out $S_{2}\left(\mathbb{Z}_{p}\right)$ is a field if and only if $p \equiv 3(\bmod 4)$.

We saw earlier the definition of the complex numbers:

$$
\begin{aligned}
\mathbb{C} & =\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\} \\
(a+b i)+(c+d i) & =(a+c)+(b+d) i \\
(a+b i)(c+d i) & =(a c-b d)+(a d+b c) i \\
(0+0 i)+(a+b i) & =a+b i \\
(1+0 i)(a+b i) & =a+b i
\end{aligned}
$$

where, in particular, the multiplication is keyed to the fact that $i^{2}=-1$.

Moreover, \mathbb{C} can also be viewed as a vector space in that every $z \in \mathbb{C}$ is of the form $z=a+b i=a \cdot 1+b \cdot i$.
i.e. every element of \mathbb{C} is a linear combination of $\{1, i\}$

This begs the question as to whether one could generalize this idea, and indeed there is, but there are some startling contrasts in comparison to \mathbb{C}.

The Quaternions (Hamiltonians) as a set is

$$
\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}
$$

namely linear combinations of $\{1, i, j, k\}$ (so that \mathbb{H} is additively just like the vector space \mathbb{R}^{4}) but where the i, j, k have the following properties:

$$
\begin{aligned}
1 \cdot i & =i, 1 \cdot j=j, 1 \cdot k=k \\
i^{2} & =j^{2}=k^{2}=-1 \\
i j & =k, j k=i, k i=j \\
j i & =-k, k j=-i, \quad i k=-j
\end{aligned}
$$

where a product $\left(a_{1}+b_{1} i+c_{1} j+d_{1} k\right)\left(a_{2}+b_{2} i+c_{2} j+d_{2} k\right)$ is expanded out and simplified according to the rules governing $1, i, j$, and k as above.

One may (with some effort!) verify that \mathbb{H} is a ring, with additive identity $0+0 i+0 j+0 k$ and multiplicative identity $1+0 i+0 j+0 k$.

The other properties (such as associativity) are messy to check, but do hold.

One of the principal observations is that \mathbb{H} is a non-commutative ring, which stems of course from the rules governing how the 'basis' elements are multiplied.

The similarity to \mathbb{C} is obvious in that j and k are two other 'square roots of -1 ' but what is a Iso interesting is the following similarity with \mathbb{C} which we'll discuss in more generality later.

If $z=a+b i \in \mathbb{C}$ where $(a, b) \neq(0,0)$ we saw that

$$
z^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i \in \mathbb{C}
$$

which means that \mathbb{C} is a field.

In a similar way although requiring a bit more work :-), one may show that every non-zero $h=a+b i+c j+d k \in \mathbb{H}$ has a multiplicative inverse as well.

However, as \mathbb{H} is non-commutative, we use the term division ring to characterize \mathbb{H}.

We'll talk more about fields later on.

Polynomials

Definition

If R is a commutative ring and x a variable, the polynomial ring $R[x]$ is the set of all expressions of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $n \geq 0$ is an integer, and each $a_{i} \in R$, where if $a_{n} \neq 0$ we say $\operatorname{deg}(f)=n$. Addition is defined degree by degree, namely

$$
\begin{aligned}
f(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
g(x) & =b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0} \\
& \downarrow \text { assuming } n \geq m
\end{aligned}
$$

$$
f(x)+g(x)=\left(a_{n}+b_{n}\right) x^{n}+\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)
$$

where for $t>m$ we view $b_{t}=0$.

Definition

Multiplication is as follows:
$f(x) \cdot g(x)=\left(a_{n} b_{m}\right) x^{n+m}+\cdots+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+a_{0} b_{0}$
.Also 0 (i.e. the constant polynomial) is the additive identity and $1 \in R$ is the multiplicative identity.

If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ (i.e. $a_{n}=1$) then we say $f(x)$ is a monic polynomial.

We also note that if R is \mathbb{Z} or a field like $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or even \mathbb{Z}_{p} then

$$
\begin{aligned}
\operatorname{deg}(f(x)+g(x)) & \leq \max \{\operatorname{deg}(f(x)), \operatorname{deg}(g(x))\} \\
\operatorname{deg}(f(x) \cdot g(x)) & =\operatorname{deg}(f(x))+\operatorname{deg}(g(x))
\end{aligned}
$$

If $R=\mathbb{Z}_{m}$ for m not a prime then it is possible to have $\operatorname{deg}(f(x) \cdot g(x)) \leq \operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.

For example, in $\mathbb{Z}_{6}[x]$ we have

$$
\begin{aligned}
\left(3 x^{2}+2 x+1\right)\left(2 x^{2}+1\right) & =6 x^{4}+4 x^{3}+2 x^{2}+3 x^{2}+2 x+1 \\
& =4 x^{3}+5 x^{2}+1
\end{aligned}
$$

where this happened because the product of the leading coefficients ' 3 ' and '2' equals $6 \equiv 0$ in \mathbb{Z}_{6}.

Indeed, this is more a point about the arithmetic in \mathbb{Z}_{6} since for the two non-zero elements 2 and 3 , their product $2 \cdot 3$ is zero in \mathbb{Z}_{6}.

In contrast, this never happens in \mathbb{Z}_{p}. (More on this later.)

Polynomial Long Division

Just as one can divide one integer by another to yield a unique quotient and remainder. The same holds true for the ring $F[x]$ for any field F.

Theorem

The Division Algorithm for $F[x]$

Let F be a field and let $f(x), g(x) \in F[x]$ where $g \neq 0$ then there exists unique $q(x), r(x) \in F[x]$ such that

$$
f(x)=q(x) g(x)+r(x)
$$

where either $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$.

Proof:

Assume that $\operatorname{deg}(f(x)) \geq \operatorname{deg}(g(x))$ otherwise, having $f(x)=q(x) g(x)+r(x)$ would imply that $q(x)=0$ and $r(x)=f(x)$.

Assuming this, then we use an 'inductive' argument keyed to the degree of $f(x)$.

If $\operatorname{deg}(f(x))=1$ then $f(x)=a x+b$ so $g(x)=c$ (a constant) and therefore $a x+b=\left(\frac{a}{c} x\right) c+b$ so $q(x)=\left(\frac{a}{c} x\right)$ and $r(x)=b$, i.e. $\operatorname{deg}(r(x))=0$.

Proof (continued)

If

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

where $a_{n} \neq 0$ and $b_{m} \neq 0$ then $m<n$ so let $t=n-m$ and define $q_{1}(x)=c_{t} x^{t}$ where $c_{t}=\frac{a_{n}}{b_{m}}$.

Then

$$
\begin{aligned}
q_{1}(x) g(x) & =\left(b_{m} \frac{a_{n}}{b_{m}}\right) x^{n}+\ldots \\
& =a_{n} x^{n}+\ldots
\end{aligned}
$$

which means $\operatorname{deg}\left(f(x)-q_{1}(x) g(x)\right)<n$ so by induction we may assume the theorem holds for $f(x)-q_{1}(x) g(x)$.

So there exists polynomials $q_{2}(x)$ and $r(x)$ such that $f(x)-q_{1}(x) g(x)=q_{2}(x) g(x)+r(x)$ which means

$$
f(x)=\left(q_{2}(x)+q_{1}(x)\right) g(x)+r(x)=q(x) g(x)+r(x)
$$

i.e. $q(x)=q_{1}(x)+q_{2}(x)$ so that indeed, we have a quotient ' $q(x)^{\prime}$ and a remainder ' $r(x)$ ' so that $f(x)=q(x) g(x)+r(x)$.

Proof (continued)

The last part to check is that if $f(x)=q(x) g(x)+r(x)$ and $f(x)=\tilde{q}(x) g(x)+\tilde{r}(x)$ that $\tilde{q}(x)=q(x)$ and $\tilde{r}(x)=r(x)$.

But this implies that

$$
\begin{aligned}
f(x)-f(x) & =(q(x) g(x)+r(x))-(\tilde{q}(x) g(x)+\tilde{r}(x)) \\
& =(q(x)-\tilde{q}(x)) g(x)+(r(x)-\tilde{r}(x))
\end{aligned}
$$

but $f(x)-f(x)=0$ so, by degree considerations $q(x)-\tilde{q}(x)=0$ and $r(x)-\tilde{r}(x)=0$ so $q(x)=\tilde{q}(x)$ and $r(x)=\tilde{r}(x)$.

