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Factorization of Polynomials

In the Division Algorithm, when f (x) = q(x)g(x) + r(x), if r(x) = 0 then
f (x) = q(x)g(x) so that g(x) evenly divides f (x) and we have a
factorization of f (x) into two lower degree polynomials.

We begin with a basic result relating factors with roots.

Definition

If f (x) ∈ R [x ] where say f (x) = anx
n + · · ·+ a1x + a0 then for α ∈ R one

has
f (α) = anα

n + · · ·+ a1α+ a0

which is the result of evaluating f (x) at x = α which yields an element of
R .

Note: If f (x) = x − α then clearly f (α) = 0.
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Theorem

Let F be a field, and suppose f (x) ∈ F [x ] then x − α is a divisor of f (x) if
and only if f (α) = 0.

Proof.

Assume deg(f (x)) ≥ 1 then f (x) = q(x)(x − α) + r(x) for some q(x),
r(x) so that f (α) = q(α)(α − α) + r(α) which equals r(α).

However deg(r(x)) < deg(x − α) = 1 so r(x) is constant, which means
r(x) = 0.
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Note, if f (β) = 0 for some β ∈ F as well, then if α 6= β

f (x) = q(x)(x − α)

↓

f (β) = q(β)(β − α)

so that f (β) = 0 if and only if q(β) = 0 meaning that q(x) = q̃(x)(x − β)
so, concordantly f (x) = q̃(x)(x − β)(x − α) where deg(f (x)) = n implies
deg(q(x)) = n − 1 and therefore deg(q̃(x)) = n − 2.
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The result of this is the following fact about the roots (potentially
repeated) of a polynomial f (x).

Theorem

If F is a field and f (x) ∈ F [x ] where deg(f (x)) = n then f (x) has at most

n distinct roots.

In general, finding roots/factors of a polynomial f (x) ∈ R[x ] is difficult if
deg(f (x)) ≥ 5 since there are no explicit formulas, except for
deg(f (x)) = 2, 3, 4.

Timothy Kohl (Boston University) MA294 Lecture March 26, 2024 5 / 17



Of course, trial and error can sometimes lead to factorizations of larger
degree polynomials.

What about polynomials in Zp[x ].

Observation: For a given degree n, there are (p − 1)pn polynomials of
degree n since if f (x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 then an 6= 0 but

each ai ∈ Zp for i = 0, . . . , n − 1.

So, in principal one could take a given f (x) ∈ Zp[x ] and look at all
q(x), g(x) ∈ Zp[x ] such that deg(q(x)) + deg(g(x)) = deg(f (x)) and
compute q(x)g(x) to see if it equals f (x).
e.g.

f (x) = ax2 + bx + c

g(x) = dx + f

q(x) = hx + k
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For simplicity though, we can assume that if

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

and f (α) = 0 then if

f̃ (x) =
1

an
f (x) = xn +

an−1

an
xn−1 + · · ·+

a0

an

where f̃ (α) = 0 too.

i.e. One can restrict attention to monic polynomials.
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So in Zp[x ] we have say

f (x) = x2 + ax + b

= (x − α)(x − β)

where there are p2 monic quadratics f (x), so we can ask, how many of
these are irreducible, that is not factorable as (x − α)(x − β).

Since (x − α)(x − β) = (x − β)(x − α) then there are

1

2
p(p − 1)

︸ ︷︷ ︸

α6=β

+ p
︸︷︷︸

α=β

=
p2 + p

2

monic quadratics that are factorable.

As such there are p2−p
2 irreducible (monic) quadratic polynomials Zp

polynomials.
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Note: Sometimes a polynomial will have irreducible factors that are not
linear. (degree 1)

Example: x4 + 1 ∈ Z3[x ] is factorable as (x2 + x + 2)(x2 + 2x + 2) but
neither are linear, and neither are themselves factorable.

Why? Simply plug in x = 0, 1, 2 into q(x) = x2 + x + 2 you get

q(0) = 2

q(1) = 1

q(2) = 2

and similarly x2 + 2x + 2 has no roots in Z3 either.

Timothy Kohl (Boston University) MA294 Lecture March 26, 2024 9 / 17



Finite Fields

As Zp is a field, we use the notation Fp to emphasize the fact that it’s a
field, albeit one with finitely many elements.

We shall now consider a (actually the) finite field with 9 = 32 elements.

Consider f (x) = x2 + 1 ∈ F3[x ] and observe that f (0) = 1, f (1) = 2, and
f (2) = 2 which implies that f (x) is irreducible.

Moreover, consider what happens if we take an arbitrary p(x) ∈ Fp[x ] and
divide it by x2 + 1, i.e.

p(x) = q(x)(x2 + 1) + r(x)

where r(x) = 0, or deg(r(x)) < deg(x2 + 1) = 2
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This means that r(x) = ax + b for some a, b ∈ F3 and this is the case
regardless of the degree of p(x), so

r(x) ∈ {0, 1, 2, x , x + 1, x + 2, 2x , 2x + 1, 2x + 2}

so there are 32 = 9 different remainders.

Consider the parallel with dividing an arbitrary integer n by a fixed integer
(modulus) m to yield n = qm + r where r ∈ {0, 1, . . . ,m − 1} which leads
to the construction of the ring Zm.
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We can make F9 = {0, 1, 2, x , x + 1, x + 2, 2x , 2x + 1, 2x + 2} into a ring
as well.

First, the addition is simply

(ax + b)
︸ ︷︷ ︸

∈F9

+(a′x + b′)
︸ ︷︷ ︸

∈F9

= (a + a′)x + (b + b′) ∈ F9

and when we multiply according to the following rule, which stems from
the roots of the polynomial x2 + 1 = 0, namely x2 = −1 = 2.

Thus

(ax+b)(a′x+b′) = aa′x2+ab′x+a′bx+bb′ = (ab′+a′b)x+(2aa′+bb′) ∈ F9

and 0 = 0x + 0 and 1 = 0x + 1 are the additive and multiplicative identity
elements.
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In order to establish that F9 is a field, we need to show that each non-zero
element has a multiplicative inverse, for example
(x + 1)(x + 2) = x2 + 3x + 2 = x2 + 2 = 2 + 2 = 1.

By direct calculation:

1−1 = 1

(x + 1)−1 = x + 2

(2x + 1)−1 = 2x + 2

2−1 = 2

(x + 2)−1 = x + 1

(2x + 2)−1 = 2x + 1

x−1 = 2x

(2x)−1 = x

So F9 is a field.
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In general, one can argue as follows:

Definition

A commutative ring with unity R is a domain (or integral domain) if, for
x , y ∈ R , xy = 0 implies that x = 0 or y = 0, or both.

In a domain, one can show that if x 6= 0 then xy = xz implies y = z .

Why? If xy = xz then xy − xz = 0 that is x(y − z) = 0.

But being a domain, if x 6= 0 then x(y − z) = 0 implies that y − z = 0,
but then y = z .
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The relevence to F9 is the following useful fact due to Wedderburn.

Theorem

If R is an integral domain where |R | is finite, then R is a field.

Proof.

Consider R − {0} = {r1, r2, . . . , rn} where, we may assume r1 = 1.
So now, pick any element r ∈ R − {0} (i.e. r = ri for some i) and
consider {rr1, rr2, . . . , rrn}.

We note that rrj = rrk implies rj = rk because R is a domain, so
{rr1, rr2, . . . , rrn} is a permutation of R − {0} and so, for some rj we have
rrj = 1 since 1 ∈ R − {0}. Thus, r has an inverse.
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So applied to F9 we can easily show that it is a domain (just check the
rule for multiplication) and so we can infer it’s a field by Wedderburn’s
theorem.

Another way to view F9 is by the observation that ’x ’ in F9 has the
property that x2 = 2 = −1 which is very analgous to the imaginary unit i
which has the property that i2 = −1.

The analogy we draw is that a + bx ↔ a + bi so that F9 is F3 with ’i ’
adjoined, just as C is R with ’i ’ adjoined to ’enlarge’ it.
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We can also compute powers of elements of the group U(F9) = F
∗
9,

(2x + 1)0 = 1

(2x + 1)1 = 2x + 1

(2x + 1)2 = x

(2x + 1)3 = x + 1

(2x + 1)4 = 2

(2x + 1)5 = x + 2

(2x + 1)6 = 2x

(2x + 1)7 = 2x + 2

(2x + 1)8 = 1

which shows that U(F9) = 〈2x + 1〉, i.e. a cyclic group.
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