# MA294 Lecture

## Timothy Kohl

Boston University

March 26, 2024

# **Factorization of Polynomials**

In the Division Algorithm, when f(x) = q(x)g(x) + r(x), if r(x) = 0 then f(x) = q(x)g(x) so that g(x) evenly divides f(x) and we have a factorization of f(x) into two *lower degree* polynomials.

We begin with a basic result relating factors with roots.

### Definition

If  $f(x) \in R[x]$  where say  $f(x) = a_n x^n + \cdots + a_1 x + a_0$  then for  $\alpha \in R$  one has

$$f(\alpha) = a_n \alpha^n + \dots + a_1 \alpha + a_0$$

which is the result of evaluating f(x) at  $x = \alpha$  which yields an element of R.

Note: If  $f(x) = x - \alpha$  then clearly  $f(\alpha) = 0$ .

#### Theorem

Let F be a field, and suppose  $f(x) \in F[x]$  then  $x - \alpha$  is a divisor of f(x) if and only if  $f(\alpha) = 0$ .

#### Proof.

Assume 
$$deg(f(x)) \ge 1$$
 then  $f(x) = q(x)(x - \alpha) + r(x)$  for some  $q(x)$ ,  $r(x)$  so that  $f(\alpha) = q(\alpha)(\alpha - \alpha) + r(\alpha)$  which equals  $r(\alpha)$ .

However  $deg(r(x)) < deg(x - \alpha) = 1$  so r(x) is constant, which means r(x) = 0.

Note, if  $f(\beta) = 0$  for some  $\beta \in F$  as well, then if  $\alpha \neq \beta$ 

$$f(x) = q(x)(x - \alpha)$$

$$\downarrow$$

$$f(\beta) = q(\beta)(\beta - \alpha)$$

so that  $f(\beta) = 0$  if and only if  $q(\beta) = 0$  meaning that  $q(x) = \tilde{q}(x)(x - \beta)$ so, concordantly  $f(x) = \tilde{q}(x)(x - \beta)(x - \alpha)$  where deg(f(x)) = n implies deg(q(x)) = n - 1 and therefore  $deg(\tilde{q}(x)) = n - 2$ . The result of this is the following fact about the roots (potentially repeated) of a polynomial f(x).

#### Theorem

If F is a field and  $f(x) \in F[x]$  where deg(f(x)) = n then f(x) has at most n distinct roots.

In general, finding roots/factors of a polynomial  $f(x) \in \mathbb{R}[x]$  is difficult if  $deg(f(x)) \ge 5$  since there are no explicit formulas, except for deg(f(x)) = 2, 3, 4.

Of course, trial and error can sometimes lead to factorizations of larger degree polynomials.

What about polynomials in  $\mathbb{Z}_p[x]$ .

Observation: For a given degree *n*, there are  $(p-1)p^n$  polynomials of degree *n* since if  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$  then  $a_n \neq 0$  but each  $a_i \in \mathbb{Z}_p$  for  $i = 0, \ldots, n-1$ .

So, in principal one could take a given  $f(x) \in \mathbb{Z}_p[x]$  and look at all  $q(x), g(x) \in \mathbb{Z}_p[x]$  such that deg(q(x)) + deg(g(x)) = deg(f(x)) and compute q(x)g(x) to see if it equals f(x). e.g.

$$f(x) = ax^{2} + bx + c$$
$$g(x) = dx + f$$
$$q(x) = hx + k$$

For simplicity though, we can assume that if

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

and  $f(\alpha) = 0$  then if

$$\widetilde{f}(x) = \frac{1}{a_n} f(x) = x^n + \frac{a_{n-1}}{a_n} x^{n-1} + \dots + \frac{a_0}{a_n}$$

where  $\tilde{f}(\alpha) = 0$  too.

i.e. One can restrict attention to monic polynomials.

So in  $\mathbb{Z}_p[x]$  we have say

$$f(x) = x^{2} + ax + b$$
$$= (x - \alpha)(x - \beta)$$

where there are  $p^2$  monic quadratics f(x), so we can ask, how many of these are irreducible, that is *not* factorable as  $(x - \alpha)(x - \beta)$ .

Since 
$$(x - \alpha)(x - \beta) = (x - \beta)(x - \alpha)$$
 then there are



monic quadratics that are factorable.

As such there are  $\frac{p^2-p}{2}$  irreducible (monic) quadratic polynomials  $\mathbb{Z}_p$  polynomials.

Note: Sometimes a polynomial will have irreducible factors that are not linear. (degree 1)

Example:  $x^4 + 1 \in \mathbb{Z}_3[x]$  is factorable as  $(x^2 + x + 2)(x^2 + 2x + 2)$  but neither are linear, and neither are themselves factorable.

Why? Simply plug in x = 0, 1, 2 into  $q(x) = x^2 + x + 2$  you get

$$q(0) = 2$$
  
 $q(1) = 1$   
 $q(2) = 2$ 

and similarly  $x^2 + 2x + 2$  has no roots in  $\mathbb{Z}_3$  either.

As  $\mathbb{Z}_p$  is a field, we use the notation  $\mathbb{F}_p$  to emphasize the fact that it's a field, albeit one with finitely many elements.

We shall now consider a (actually <u>the</u>) finite field with  $9 = 3^2$  elements.

Consider  $f(x) = x^2 + 1 \in \mathbb{F}_3[x]$  and observe that f(0) = 1, f(1) = 2, and f(2) = 2 which implies that f(x) is irreducible.

Moreover, consider what happens if we take an arbitrary  $p(x) \in \mathbb{F}_p[x]$  and divide it by  $x^2 + 1$ , i.e.

$$p(x) = q(x)(x^2 + 1) + r(x)$$

where r(x) = 0, or  $deg(r(x)) < deg(x^2 + 1) = 2$ 

This means that r(x) = ax + b for some  $a, b \in \mathbb{F}_3$  and this is the case regardless of the degree of p(x), so

$$r(x) \in \{0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2\}$$

so there are  $3^2 = 9$  different remainders.

Consider the parallel with dividing an arbitrary integer n by a *fixed* integer (modulus) m to yield n = qm + r where  $r \in \{0, 1, ..., m - 1\}$  which leads to the construction of the ring  $\mathbb{Z}_m$ .

We can make  $\mathbb{F}_9 = \{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}$  into a ring as well.

First, the addition is simply

$$\underbrace{(ax+b)}_{\in \mathbb{F}_9} + \underbrace{(a'x+b')}_{\in \mathbb{F}_9} = (a+a')x + (b+b') \in \mathbb{F}_9$$

and when we multiply according to the following rule, which stems from the roots of the polynomial  $x^2 + 1 = 0$ , namely  $x^2 = -1 = 2$ .

Thus

$$(ax+b)(a'x+b') = aa'x^2 + ab'x + a'bx + bb' = (ab'+a'b)x + (2aa'+bb') \in \mathbb{F}_9$$

and 0 = 0x + 0 and 1 = 0x + 1 are the additive and multiplicative identity elements.

In order to establish that  $\mathbb{F}_9$  is a field, we need to show that each non-zero element has a multiplicative inverse, for example  $(x+1)(x+2) = x^2 + 3x + 2 = x^2 + 2 = 2 + 2 = 1.$ 

By direct calculation:

$$1^{-1} = 1$$
  
(x + 1)<sup>-1</sup> = x + 2  
(2x + 1)<sup>-1</sup> = 2x + 2  
2<sup>-1</sup> = 2  
(x + 2)<sup>-1</sup> = x + 1  
(2x + 2)<sup>-1</sup> = 2x + 1  
x<sup>-1</sup> = 2x  
(2x)<sup>-1</sup> = x

So  $\mathbb{F}_9$  is a field.

Timothy Kohl (Boston University)

In general, one can argue as follows:

### Definition

A commutative ring with unity R is a <u>domain</u> (or integral domain) if, for  $x, y \in R$ , xy = 0 implies that x = 0 or y = 0, or both.

In a domain, one can show that if  $x \neq 0$  then xy = xz implies y = z.

Why? If 
$$xy = xz$$
 then  $xy - xz = 0$  that is  $x(y - z) = 0$ .

But being a domain, if  $x \neq 0$  then x(y - z) = 0 implies that y - z = 0, but then y = z.

The relevence to  $\mathbb{F}_9$  is the following useful fact due to Wedderburn.

#### Theorem

If R is an integral domain where |R| is finite, then R is a field.

#### Proof.

Consider  $R - \{0\} = \{r_1, r_2, ..., r_n\}$  where, we may assume  $r_1 = 1$ . So now, pick any element  $r \in R - \{0\}$  (i.e.  $r = r_i$  for some *i*) and consider  $\{rr_1, rr_2, ..., rr_n\}$ .

We note that  $rr_j = rr_k$  implies  $r_j = r_k$  because R is a domain, so  $\{rr_1, rr_2, \ldots, rr_n\}$  is a permutation of  $R - \{0\}$  and so, for some  $r_j$  we have  $rr_j = 1$  since  $1 \in R - \{0\}$ . Thus, r has an inverse.

So applied to  $\mathbb{F}_9$  we can easily show that it is a domain (just check the rule for multiplication) and so we can infer it's a field by Wedderburn's theorem.

Another way to view  $\mathbb{F}_9$  is by the observation that 'x' in  $\mathbb{F}_9$  has the property that  $x^2 = 2 = -1$  which is very analgous to the imaginary unit *i* which has the property that  $i^2 = -1$ .

The analogy we draw is that  $a + bx \leftrightarrow a + bi$  so that  $\mathbb{F}_9$  is  $\mathbb{F}_3$  with 'i' adjoined, just as  $\mathbb{C}$  is  $\mathbb{R}$  with 'i' adjoined to 'enlarge' it.

We can also compute powers of elements of the group  $U(\mathbb{F}_9) = \mathbb{F}_9^*$ ,

$$(2x + 1)^{0} = 1$$
  

$$(2x + 1)^{1} = 2x + 1$$
  

$$(2x + 1)^{2} = x$$
  

$$(2x + 1)^{3} = x + 1$$
  

$$(2x + 1)^{4} = 2$$
  

$$(2x + 1)^{5} = x + 2$$
  

$$(2x + 1)^{6} = 2x$$
  

$$(2x + 1)^{7} = 2x + 2$$
  

$$(2x + 1)^{8} = 1$$

which shows that  $U(\mathbb{F}_9) = \langle 2x + 1 \rangle$ , i.e. a cyclic group.