MA294 Lecture

Timothy Kohl

Boston University

March 26, 2024

Factorization of Polynomials

In the Division Algorithm, when $f(x)=q(x) g(x)+r(x)$, if $r(x)=0$ then $f(x)=q(x) g(x)$ so that $g(x)$ evenly divides $f(x)$ and we have a factorization of $f(x)$ into two lower degree polynomials.

We begin with a basic result relating factors with roots.

Definition

If $f(x) \in R[x]$ where say $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ then for $\alpha \in R$ one has

$$
f(\alpha)=a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0}
$$

which is the result of evaluating $f(x)$ at $x=\alpha$ which yields an element of R.

Note: If $f(x)=x-\alpha$ then clearly $f(\alpha)=0$.

Theorem

Let F be a field, and suppose $f(x) \in F[x]$ then $x-\alpha$ is a divisor of $f(x)$ if and only if $f(\alpha)=0$.

Proof.

Assume $\operatorname{deg}(f(x)) \geq 1$ then $f(x)=q(x)(x-\alpha)+r(x)$ for some $q(x)$, $r(x)$ so that $f(\alpha)=q(\alpha)(\alpha-\alpha)+r(\alpha)$ which equals $r(\alpha)$.

However $\operatorname{deg}(r(x))<\operatorname{deg}(x-\alpha)=1$ so $r(x)$ is constant, which means $r(x)=0$.

Note, if $f(\beta)=0$ for some $\beta \in F$ as well, then if $\alpha \neq \beta$

$$
\begin{gathered}
f(x)=q(x)(x-\alpha) \\
\quad \downarrow \\
f(\beta)=q(\beta)(\beta-\alpha)
\end{gathered}
$$

so that $f(\beta)=0$ if and only if $q(\beta)=0$ meaning that $q(x)=\tilde{q}(x)(x-\beta)$ so, concordantly $f(x)=\tilde{q}(x)(x-\beta)(x-\alpha)$ where $\operatorname{deg}(f(x))=n$ implies $\operatorname{deg}(q(x))=n-1$ and therefore $\operatorname{deg}(\tilde{q}(x))=n-2$.

The result of this is the following fact about the roots (potentially repeated) of a polynomial $f(x)$.

Theorem

If F is a field and $f(x) \in F[x]$ where $\operatorname{deg}(f(x))=n$ then $f(x)$ has at most n distinct roots.

In general, finding roots/factors of a polynomial $f(x) \in \mathbb{R}[x]$ is difficult if $\operatorname{deg}(f(x)) \geq 5$ since there are no explicit formulas, except for $\operatorname{deg}(f(x))=2,3,4$.

Of course, trial and error can sometimes lead to factorizations of larger degree polynomials.

What about polynomials in $\mathbb{Z}_{p}[x]$.

Observation: For a given degree n, there are $(p-1) p^{n}$ polynomials of degree n since if $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ then $a_{n} \neq 0$ but each $a_{i} \in \mathbb{Z}_{p}$ for $i=0, \ldots, n-1$.

So, in principal one could take a given $f(x) \in \mathbb{Z}_{p}[x]$ and look at all $q(x), g(x) \in \mathbb{Z}_{p}[x]$ such that $\operatorname{deg}(q(x))+\operatorname{deg}(g(x))=\operatorname{deg}(f(x))$ and compute $q(x) g(x)$ to see if it equals $f(x)$.
e.g.

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& g(x)=d x+f \\
& q(x)=h x+k
\end{aligned}
$$

For simplicity though, we can assume that if

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

and $f(\alpha)=0$ then if

$$
\tilde{f}(x)=\frac{1}{a_{n}} f(x)=x^{n}+\frac{a_{n-1}}{a_{n}} x^{n-1}+\cdots+\frac{a_{0}}{a_{n}}
$$

where $\tilde{f}(\alpha)=0$ too.
i.e. One can restrict attention to monic polynomials.

So in $\mathbb{Z}_{p}[x]$ we have say

$$
\begin{aligned}
f(x) & =x^{2}+a x+b \\
& =(x-\alpha)(x-\beta)
\end{aligned}
$$

where there are p^{2} monic quadratics $f(x)$, so we can ask, how many of these are irreducible, that is not factorable as $(x-\alpha)(x-\beta)$.

Since $(x-\alpha)(x-\beta)=(x-\beta)(x-\alpha)$ then there are

$$
\underbrace{\frac{1}{2} p(p-1)}_{\alpha \neq \beta}+\underbrace{p}_{\alpha=\beta}=\frac{p^{2}+p}{2}
$$

monic quadratics that are factorable.

As such there are $\frac{p^{2}-p}{2}$ irreducible (monic) quadratic polynomials \mathbb{Z}_{p} polynomials.

Note: Sometimes a polynomial will have irreducible factors that are not linear. (degree 1)

Example: $x^{4}+1 \in \mathbb{Z}_{3}[x]$ is factorable as $\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)$ but neither are linear, and neither are themselves factorable.

Why? Simply plug in $x=0,1,2$ into $q(x)=x^{2}+x+2$ you get

$$
\begin{aligned}
q(0) & =2 \\
q(1) & =1 \\
q(2) & =2
\end{aligned}
$$

and similarly $x^{2}+2 x+2$ has no roots in \mathbb{Z}_{3} either.

Finite Fields

As \mathbb{Z}_{p} is a field, we use the notation \mathbb{F}_{p} to emphasize the fact that it's a field, albeit one with finitely many elements.

We shall now consider a (actually the) finite field with $9=3^{2}$ elements.

Consider $f(x)=x^{2}+1 \in \mathbb{F}_{3}[x]$ and observe that $f(0)=1, f(1)=2$, and $f(2)=2$ which implies that $f(x)$ is irreducible.

Moreover, consider what happens if we take an arbitrary $p(x) \in \mathbb{F}_{p}[x]$ and divide it by $x^{2}+1$, i.e.

$$
p(x)=q(x)\left(x^{2}+1\right)+r(x)
$$

where $r(x)=0$, or $\operatorname{deg}(r(x))<\operatorname{deg}\left(x^{2}+1\right)=2$

This means that $r(x)=a x+b$ for some $a, b \in \mathbb{F}_{3}$ and this is the case regardless of the degree of $p(x)$, so

$$
r(x) \in\{0,1,2, x, x+1, x+2,2 x, 2 x+1,2 x+2\}
$$

so there are $3^{2}=9$ different remainders.

Consider the parallel with dividing an arbitrary integer n by a fixed integer (modulus) m to yield $n=q m+r$ where $r \in\{0,1, \ldots, m-1\}$ which leads to the construction of the ring \mathbb{Z}_{m}.

We can make $\mathbb{F}_{9}=\{0,1,2, x, x+1, x+2,2 x, 2 x+1,2 x+2\}$ into a ring as well.

First, the addition is simply

$$
\underbrace{(a x+b)}_{\in \mathbb{F}_{9}}+\underbrace{\left(a^{\prime} x+b^{\prime}\right)}_{\in \mathbb{F}_{9}}=\left(a+a^{\prime}\right) x+\left(b+b^{\prime}\right) \in \mathbb{F}_{9}
$$

and when we multiply according to the following rule, which stems from the roots of the polynomial $x^{2}+1=0$, namely $x^{2}=-1=2$.

Thus

$$
(a x+b)\left(a^{\prime} x+b^{\prime}\right)=a a^{\prime} x^{2}+a b^{\prime} x+a^{\prime} b x+b b^{\prime}=\left(a b^{\prime}+a^{\prime} b\right) x+\left(2 a a^{\prime}+b b^{\prime}\right) \in \mathbb{F}_{9}
$$

and $0=0 x+0$ and $1=0 x+1$ are the additive and multiplicative identity elements.

In order to establish that \mathbb{F}_{9} is a field, we need to show that each non-zero element has a multiplicative inverse, for example $(x+1)(x+2)=x^{2}+3 x+2=x^{2}+2=2+2=1$.

By direct calculation:

$$
\begin{aligned}
1^{-1} & =1 \\
(x+1)^{-1} & =x+2 \\
(2 x+1)^{-1} & =2 x+2 \\
2^{-1} & =2 \\
(x+2)^{-1} & =x+1 \\
(2 x+2)^{-1} & =2 x+1 \\
x^{-1} & =2 x \\
(2 x)^{-1} & =x
\end{aligned}
$$

So \mathbb{F}_{9} is a field.

In general, one can argue as follows:

Definition

A commutative ring with unity R is a domain (or integral domain) if, for $x, y \in R, x y=0$ implies that $x=0$ or $y=0$, or both.

In a domain, one can show that if $x \neq 0$ then $x y=x z$ implies $y=z$.

Why? If $x y=x z$ then $x y-x z=0$ that is $x(y-z)=0$.

But being a domain, if $x \neq 0$ then $x(y-z)=0$ implies that $y-z=0$, but then $y=z$.

The relevence to \mathbb{F}_{9} is the following useful fact due to Wedderburn.

Theorem

If R is an integral domain where $|R|$ is finite, then R is a field.

Proof.

Consider $R-\{0\}=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ where, we may assume $r_{1}=1$. So now, pick any element $r \in R-\{0\}$ (i.e. $r=r_{i}$ for some i) and consider $\left\{r r_{1}, r r_{2}, \ldots, r r_{n}\right\}$.

We note that $r r_{j}=r r_{k}$ implies $r_{j}=r_{k}$ because R is a domain, so $\left\{r r_{1}, r r_{2}, \ldots, r r_{n}\right\}$ is a permutation of $R-\{0\}$ and so, for some r_{j} we have $r r_{j}=1$ since $1 \in R-\{0\}$. Thus, r has an inverse.

So applied to \mathbb{F}_{9} we can easily show that it is a domain (just check the rule for multiplication) and so we can infer it's a field by Wedderburn's theorem.

Another way to view \mathbb{F}_{9} is by the observation that ' x ' in \mathbb{F}_{9} has the property that $x^{2}=2=-1$ which is very analgous to the imaginary unit i which has the property that $i^{2}=-1$.

The analogy we draw is that $a+b x \leftrightarrow a+b i$ so that \mathbb{F}_{9} is \mathbb{F}_{3} with ' i ' adjoined, just as \mathbb{C} is \mathbb{R} with ' i ' adjoined to 'enlarge' it.

We can also compute powers of elements of the $\operatorname{group} U\left(\mathbb{F}_{9}\right)=\mathbb{F}_{9}^{*}$,

$$
\begin{aligned}
& (2 x+1)^{0}=1 \\
& (2 x+1)^{1}=2 x+1 \\
& (2 x+1)^{2}=x \\
& (2 x+1)^{3}=x+1 \\
& (2 x+1)^{4}=2 \\
& (2 x+1)^{5}=x+2 \\
& (2 x+1)^{6}=2 x \\
& (2 x+1)^{7}=2 x+2 \\
& (2 x+1)^{8}=1
\end{aligned}
$$

which shows that $U\left(\mathbb{F}_{9}\right)=\langle 2 x+1\rangle$, i.e. a cyclic group.

