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Factorization of Polynomials

In the Division Algorithm, when f(x) = q(x)g(x) + r(x), if r(x) = 0 then
f(x) = q(x)g(x) so that g(x) evenly divides f(x) and we have a
factorization of f(x) into two lower degree polynomials.

We begin with a basic result relating factors with roots.
Definition

If f(x) € R[x] where say f(x) = apx" +--- 4 a;x + ag then for o € R one
has

fa) = a,a" + -~ + a1 + ap

which is the result of evaluating f(x) at x = a which yields an element of
R.

Note: If f(x) = x — « then clearly f(«) = 0.

Timothy Kohl (Boston University) MA294 Lecture March 26, 2024 2 /17



Let F be a field, and suppose f(x) € F[x] then x — « is a divisor of f(x) if
and only if f(a) = 0.

Proof.

Assume deg(f(x)) > 1 then f(x) = q(x)(x — @) + r(x) for some g(x),
r(x) so that f(a) = g(a)(a — ) + r(«) which equals r(«).

However deg(r(x)) < deg(x — a) =1 so r(x) is constant, which means
r(x) = 0. [

v
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Note, if f(8) = 0 for some 3 € F as well, then if a # 3

f(x) = q(x)(x — @)
!
f(B) = q(B)(B — a)

so that f(8) = 0 if and only if g(8) = 0 meaning that g(x) = §(x)(x — 5)
so, concordantly f(x) = g(x)(x — B8)(x — a) where deg(f(x)) = n implies
deg(q(x)) = n— 1 and therefore deg(§(x)) =n— 2.
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The result of this is the following fact about the roots (potentially
repeated) of a polynomial f(x).

If F is a field and f(x) € F[x] where deg(f(x)) = n then f(x) has at most
n distinct roots.

In general, finding roots/factors of a polynomial f(x) € R[x] is difficult if
deg(f(x)) > 5 since there are no explicit formulas, except for
deg(f(x)) = 2,3,4.
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Of course, trial and error can sometimes lead to factorizations of larger
degree polynomials.

What about polynomials in Zp[x].

Observation: For a given degree n, there are (p — 1)p” polynomials of
degree n since if f(x) = apx" + a,_1x" "1 + -+ a;x + ag then a, # 0 but
each aj € Zp for i =0,...,n— 1.

So, in principal one could take a given f(x) € Zp[x] and look at all

q(x), g(x) € Zp[x] such that deg(q(x)) + deg(g(x)) = deg(f(x)) and
compute g(x)g(x) to see if it equals f(x).

e.g.
f(x) =ax® + bx +c
g(x)=dx+f
q(x) = hx+ k
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For simplicity though, we can assume that if
f(x) = apx" + ap_1x" 4+ ax + ag

and f(a) = 0 then if

where 7(a) = 0 too.

i.e. One can restrict attention to monic polynomials.
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So in Zp[x] we have say

f(x) =x*>+ax+b
= (x —a)(x = p)

where there are p? monic quadratics f(x), so we can ask, how many of
these are irreducible, that is not factorable as (x — a)(x — ).

Since (x — a)(x — B) = (x — B)(x — «) then there are

1 p>+p
sp(p—1)+ p =
2 ~— 2
N—— a=8

o#f

monic quadratics that are factorable.

2_p . : . . .
As such there are % irreducible (monic) quadratic polynomials Z,

polynomials.
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Note: Sometimes a polynomial will have irreducible factors that are not
linear. (degree 1)

Example: x* + 1 € Z3[x] is factorable as (x? + x + 2)(x? + 2x + 2) but
neither are linear, and neither are themselves factorable.

Why? Simply plug in x = 0,1,2 into g(x) = x?> + x + 2 you get

and similarly x2 + 2x + 2 has no roots in Z3 either.
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Finite Fields

As Zp, is a field, we use the notation [F, to emphasize the fact that it's a
field, albeit one with finitely many elements.

We shall now consider a (actually the) finite field with 9 = 32 elements.

Consider f(x) = x? + 1 € F3[x] and observe that (0) = 1, f(1) = 2, and
f(2) = 2 which implies that f(x) is irreducible.

Moreover, consider what happens if we take an arbitrary p(x) € Fp[x] and
divide it by x> +1, i.e.

p(x) = q(x)(x* +1) + r(x)

where r(x) = 0, or deg(r(x)) < deg(x® +1) =2
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This means that r(x) = ax + b for some a, b € F3 and this is the case
regardless of the degree of p(x), so

r(x) € {0,1,2,x,x + 1, x + 2,2x,2x + 1,2x + 2}

so there are 32 = 9 different remainders.

Consider the parallel with dividing an arbitrary integer n by a fixed integer
(modulus) m to yield n = gm + r where r € {0,1,..., m — 1} which leads
to the construction of the ring Z,,.
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We can make Fg = {0,1,2,x,x + 1, x + 2,2x,2x + 1,2x + 2} into a ring
as well.

First, the addition is simply

(ax + b)+ (a'x+ b)=(a+a)x+ (b+ b') € Fy
—_——— —

€Fg €l

and when we multiply according to the following rule, which stems from
the roots of the polynomial x2 +1 =0, namely x?> = —1 = 2.

Thus
(ax+b)(a'x+b") = aa'x*+ab'x+a' bx+bb' = (ab'+3'b)x+(2aa’+bb') € Fy

and 0 =0x + 0 and 1 = 0x + 1 are the additive and multiplicative identity
elements.
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In order to establish that Fg is a field, we need to show that each non-zero
element has a multiplicative inverse, for example
(x+1)(x+2)=x2+3x+2=x>+2=2+2=1.

By direct calculation:

17t=1
(x+1)t=x42
(2x+1)1=2x42

271 =2

(x+2)t=x+1
(2x +2) P =2x+1
x7t=2x

(2x)_1 =X

So Fy is a field.
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In general, one can argue as follows:

Definition

A commutative ring with unity R is a domain (or integral domain) if, for
x,y € R, xy = 0 implies that x =0 or y = 0, or both.

In a domain, one can show that if x # 0 then xy = xz implies y = z.
Why? If xy = xz then xy — xz = 0 that is x(y — z) = 0.

But being a domain, if x # 0 then x(y — z) = 0 implies that y — z =0,
but then y = z.
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The relevence to Fy is the following useful fact due to Wedderburn.

If R is an integral domain where |R| is finite, then R is a field.

Consider R — {0} = {n,r,..., rn} where, we may assume r; = 1.
So now, pick any element r € R — {0} (i.e. r = r; for some i) and
consider {rry, rra, ..., rry}.

We note that rr; = rr implies r; = r, because R is a domain, so
{rri,rra, ... rry} is @ permutation of R — {0} and so, for some r; we have
rri =1 since 1 € R — {0}. Thus, r has an inverse. O

4
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So applied to Fg we can easily show that it is a domain (just check the
rule for multiplication) and so we can infer it's a field by Wedderburn's
theorem.

Another way to view Fg is by the observation that 'x' in g has the
property that x> = 2 = —1 which is very analgous to the imaginary unit i
which has the property that /2 = —1.

The analogy we draw is that a + bx <> a + bi so that Fg is 3 with '/’
adjoined, just as C is R with '/’ adjoined to 'enlarge’ it.
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We can also compute powers of elements of the group U(Fq) = I,

2x +1)° =1
2x + 1) =2x+1

which shows that U(Fg) = (2x + 1), i.e. a cyclic group.
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