
MA294 Lecture

Timothy Kohl

Boston University

April 4, 2024

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 1 / 19

Error Correcting Codes

Suppose there is a space probe in orbit around Mars being controlled by a
ground station on Earth.
Commands are being sent to this probe by radio which the probe responds
to.

The problem is that solar flares or other such interference can affect the
signal, potentially garbling the message.

How does one insure that the correct commands and information are being
transmitted?

Furthermore, how can we insure that the probe can deal reliably with this
interference, and the resulting potentially garbled messages?

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 2 / 19

Information like this is typically encoded in binary {0, 1} or, more
specifically, strings of ’0’ and ’1’ of some fixed length.

We can view these fixed length ’code words’ (which has nothing to do with
encryption) as vectors v ∈ V = F

n

2 (the vector space V of dimension n
over F2) for some n.

i.e. bit ’strings’ of some fixed length.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 3 / 19

Example: n = 3, V = {000, 001, 010, 011, 100, 101, 110, 111}

Generally, the codewords are usually some fixed subset C ⊆ V , say
C = {000, 100, 001, 010}.

There are two considerations:

the number of codewords that one needs for the communcations
channel

the code length to use for these codewords

and the point is that the second depends on the first, in particular if we
wish to detect if an ’error’ has been made, namely that a 0 is received
instead of a 1 in a given codeword, and vice versa.

The initial idea is to choose the codewords of a given length so that an
error is ’obvious’.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 4 / 19

A crude method for transmitting a ’0’ or ’1’ is to use 111 for ’1’ and 000 for
’0’, so that if an error occurs, the correct interpretation can be made by
’majority rule’, namely

received → interpreted

000 → 0 i.e. no erorr

001 → 0

010 → 0

100 → 0

111 → 1 no error

110 → 1

101 → 1

011 → 1

So this code is ok if no more than one error occurs, but if say two bits are
flipped in 000 to yield say 110 then the ’majority rule’ interpretation will fail.
Also, this code is extremely inefficient since one generally needs bit strings
longer than one bit in length.
Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 5 / 19

Let’s compare a couple of different examples, each of which is set C of
four codewords, which are subsets of different Fn

2.

C1 = {00, 10, 01, 11}

So here, then length of each codeword is 2, so that C1 ⊆ V = F
2
2.

But since |V | = |F2
2| = 22 = 4 then this means every bit string in V is a

codeword.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 6 / 19

This is not a good choice at all since any error will transform a given
codeword into a different codeword, so a receiver will be unable to tell that
the erroneous codeword is erroneous.

So we observe that this code cannot detect any errors.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 7 / 19

C2 = {000, 110, 011, 101}
Here C2 ⊆ V = F

3
2 so it’s not all of V , and is a better choice because any

single error, in any codeword, will result in a bitstring not in C2.

For example

000 → 100 6∈ C2

000 → 010 6∈ C2

000 → 001 6∈ C2

The one disadvantage of this code is that it cannot correct a given one bit
error. Why?

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 8 / 19

C2 = {000, 110, 011, 101}

Consider the error 000 → 100, which is not in C2.

However, if one wanted to infer what the correct codeword that was meant
to be transmitted, one cannot do this since if one ’corrects’ the first bit
100 → 000 ∈ C2, but if one corrects the second bit, they get
100 → 110 ∈ C2 as well.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 9 / 19

001 101

011 111

000 100

010 110

This ambiguity is a symptom of the fact that the codewords are in some
sense (which we will make precise) too close to each other in order to
correct an erroneous codeword back to one and only one correct codeword.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 10 / 19

A still better set of codewords is this:

C3 = {000000, 111000, 001110, 110011} ⊆ V = F
6
2

Here, a single bit error is not only detectable in that it results in a bit
vector not in C3 but is also correctable.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 11 / 19

Why?

The basic idea is that if ~c is a codeword in C3 and we change one of its bits
to get an ’erroneous’ vector ~b and if we take any other codeword ~c ′ and
change any of its bits to get ~b′ then it is never the case that ~b = ~b′ and so
there is basically no vector that is a single bit away from ~c except ~c itself!

i.e. There is a sense of ’distance’ between codewords which we’ll make
precise and use to formalize all this intuition.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 12 / 19

Definition

For ~a,~b ∈ V = F
n

2, the Hamming distance ∂(~a,~b) is the number of bits

that differ between ~a and ~b.

For example ∂(101, 111) = 1

Lemma

The distance function ∂ satisfies the following properties:
(i) ∂(~x , ~y) = 0 if and only if ~x = ~y
(ii) ∂(~x , ~y) = ∂(~y , ~x)
(iii) ∂(~x , ~y) ≤ ∂(~x ,~z) + ∂(~z , ~y), for ~x , ~y ,~z ∈ V

The first two statements are relatively obvious, and are an exercise.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 13 / 19

The third statement is referred to as the triangle inequality and is, as the
name suggests, geometric in nature as we are viewing the vectors
~x , ~y ,~z ∈ V = F

n

2 as being in a space where the distance function ∂ follows
rules like how distances behave in ordinary Euclidean space.

~z

~x ~y

∂(~x ,~z)

∂(~x , ~y)

∂(~z , ~y)

∂(~x , ~y) ≤ ∂(~x ,~z) + ∂(~z , ~y)

i.e. The shortest distance between two points is a straight line.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 14 / 19

For a given code C there is an important number which characterizes it.

Definition

For a code C , the minimum distance between pairs of codewords is

δ = min{∂(~a,~b) |~a,~b ∈ C ;~a 6= ~b}

For C1 = {00, 10, 01, 11}, δ = 1

For C2 = {000, 110, 011, 101}, δ = 2

For C3 = {000000, 111000, 001110, 110011}, δ = 3

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 15 / 19

Observation: The distance between two codewords is the number of errors
needed to turn one into the other.

So, for a given code C with minimum distance δ, if no more than δ − 1
errors are made in transmission, the receive will be able to detect that an
error has been made.

But what about correcting errors?

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 16 / 19

Correcting Errors

The scheme we will explore is the nearest neighbor decoding principle,
namely that if an erroneous codeword was transmitted, then we can
assume that the nearest codeword in C is the correct one.

Theorem

A code C will correct ’e’ errors by the nearest neighbor principle provided
that the minimum distance δ satisfies the inequality

δ ≥ 2e + 1

.

The proof of this isn’t too difficult, and makes nice use of the triangle
inequality we saw earlier.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 17 / 19

Proof.

Say ~c was sent and e errors were made, yielding the bit vector ~z .

As such we have ∂(~c ,~z) = e.

If now ~c
′

is any other valid codeword then

∂(~c ,~z) + ∂(~z ,~c
′

) ≥ ∂(~c ,~c
′

) ≥ δ ≥ 2e + 1

Thus e + ∂(~z ,~c
′

) ≥ 2e + 1 and so ∂(~z ,~c
′

) ≥ e + 1 which implies that ~c is
the nearest codeword to ~z and so by the nearest neighbor principle, we
infer that the correct codeword is ~c .

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 18 / 19

Going back to the example:

C3 = {000000, 111000, 001110, 110011}

since δ = 3 then it can detect 2 (i.e. δ − 1) errors and correct e = 1
errors, since δ = 2(1) + 1.

Timothy Kohl (Boston University) MA294 Lecture April 4, 2024 19 / 19

