MA294 Lecture

Timothy Kohl

Boston University

April 9, 2024

Linear Codes

While codes can be constructed according to the $\delta \geq 2 e+1$ criterion, it is not so simple to do.

However, if we use the fact that $V=\mathbb{F}_{2}^{n}=\mathbb{F}_{2} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}$ is a group, then we can utilize all that we know about groups to construct codes whose properties are much easier to determine.

Definition

A code $C \subseteq \mathbb{F}_{2}^{n}$ is a linear if whenever $\vec{x}, \vec{y} \in C$ so too is $\vec{x}+\vec{y} \in C$. That is, C is actually a sub-group of V.

By Lagrange's theorem, if $C \leq \mathbb{F}_{2}^{n}$ is linear then $|C|\left|\left|\mathbb{F}_{2}^{n}\right|=2^{n}\right.$, and so $|C|=2^{k}$ for some $k \leq n$.

We refer to k as the dimension of C, which is consistent with the notion of dimension from linear algebra since C is k-dimensional subspace of $V=\mathbb{F}_{2}^{n}$.

So for a linear code C, we want to find the relationship between n, k and δ.

We have the following somewhat technical result called the 'Sphere Packing Bound'.

Theorem

If C is a linear code of some length n and dimension k then if e is the maximum number of errors which C will correct then

$$
2^{n-k} \geq\binom{ n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{e}
$$

where $\binom{n}{r}=\frac{n!}{r!(n-r)!}$.

Proof:

If \vec{c} has length n then there are $\binom{n}{r}$ ways of modifying r bits in \vec{c}.

Let $S_{e}(\vec{c})$ be the set of code words which can be obtained from \vec{c} by altering at most e bits.

We have

$$
\left|S_{e}(\vec{c})\right|=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{e}
$$

where $\binom{n}{0}=1$.

So if C corrects e errors then for $\vec{c}, \vec{c}^{\prime}$ distinct codewords in C we have

$$
S_{e}(\vec{c}) \cap S_{e}\left(\vec{c}^{\prime}\right)=\emptyset
$$

So $V=\mathbb{F}_{2}^{n}$ contains $|C|=2^{k}$ mutually disjoint subsets of size $\left|S_{e}(\vec{c})\right|$ which implies

$$
2^{n} \geq 2^{k} \times\left|S_{e}(\vec{c})\right|
$$

which implies $2^{n-k} \geq\left|S_{e}(\vec{c})\right|=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{e}$

For example, say $n=6, k=3$ and $e=2$ then we must have

$$
\begin{aligned}
2^{n-k}=2^{3} & \geq\binom{ 6}{0}+\binom{6}{1}+\binom{6}{2} \\
& =1+6+15=22
\end{aligned}
$$

which therefore is impossible.

Suppose instead $n=6, k=3$ and $e=1$ then

$$
\begin{aligned}
2^{n-k}=2^{3} & \geq\binom{ 6}{0}+\binom{6}{1} \\
& =1+6=7
\end{aligned}
$$

so it's not ruled out!

But this is not a guarantee that C would correct $e=1$ errors.

We need more facts about Linear codes to pin this down.

FACT: If C is a linear code then for $\vec{a}, \vec{x}, \vec{y} \in C$

$$
\partial(\vec{x}+\vec{a}, \vec{y}+\vec{a})=\partial(\vec{x}, \vec{y})
$$

since both \vec{x} and \vec{y} are altered in the same positions by the addition of \vec{a}.

With this in mind, we have the following definition.

Definition

If C is a linear code then the weight is defined by

$$
w(\vec{x})=\partial(\vec{x}, \overrightarrow{0})
$$

for $\vec{x} \in C$ where $\overrightarrow{0}$ is the bit vector of all zeros, i.e. the identity element.
What $w(\vec{x})$ measures then is the number of 1's in \vec{x}.

Theorem

Let C be a linear code and let $w_{\text {min }}$ be the minimum weight of any codeword in C (except $\overrightarrow{0} \in C)$ then $\delta=w_{\text {min }}$.
i.e. The minimum distance is the minimum weight of all the non-zero codewords in C.

Proof.

Let \vec{c}^{*} be a codeword in C where $w\left(\vec{c}^{*}\right)=w_{\text {min }}$.
Since \vec{c}^{*} and $\overrightarrow{0}$ are in C, we have

$$
\delta \leq \partial\left(\vec{c}^{*}, \overrightarrow{0}\right)=w\left(\vec{c}^{*}\right)=w_{\min }
$$

However, if \vec{c}_{1}, \vec{c}_{2} are two distinct codewords at minimum distance from each other then $\vec{c}_{1}-\vec{c}_{2}$ is a codeword since C is a group and

$$
\begin{aligned}
& \delta=\partial\left(\vec{c}_{1}, \vec{c}_{2}\right)=\partial\left(\vec{c}_{1}-\vec{c}_{2}, \vec{c}_{2}-\vec{c}_{2}\right)=\partial\left(\vec{c}_{1}-\vec{c}_{2}, \overrightarrow{0}\right)=w\left(\vec{c}_{1}-\vec{c}_{2}\right) \geq w_{\min } \\
& \text { and so } \delta=w_{\min }
\end{aligned}
$$

The virtue of this theorem is that it's way easier to compute $w_{\text {min }}$!

Construction of Linear Codes

As a linear code C is a subspace of the (finite) vector space $V=\mathbb{F}_{2}^{n}$ then, in fact, C must be the null-space of a matrix.

Let H be a binary matrix with n columns and \vec{x} a bit string considered as a column vector.

In particular $\overrightarrow{0}$ will be used to denote the column vector $\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$.
And if $H \vec{a}=\overrightarrow{0}$ and $H \vec{b}=\overrightarrow{0}$ then $H(\vec{a}+\vec{b})=H \vec{a}+H \vec{b}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$.

That is, the set $C=\left\{\vec{x} \in \mathbb{F}_{2}^{n} \mid H \vec{x}=\overrightarrow{0}\right\}$ is a linear code.

And we call H the parity check matrix or simply check matrix.

Example: Let $H=\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$ and suppose

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{0}{0}
$$

[We use the letter 'H' for Hamming, which are the class of codes we wish to explore.]

Then solving this yields the system

$$
\begin{aligned}
x_{1}+x_{3} & =0 \\
x_{2}+x_{3}+x_{4} & =0
\end{aligned}
$$

and so $x_{1}=-x_{3}, x_{2}=-x_{3}-x_{4}$ where $\left\{x_{3}, x_{4}\right\}$ are free variables

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =x_{3}\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right) \\
& =x_{3}\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

where $x_{3}, x_{4} \in \mathbb{F}_{2}$, which yields the code $C=\{0000,1110,0101,1011\}$.

In general, if C is to be a subspace of \mathbb{F}_{2}^{n} then we will assume that H has the following form.

$$
H=\left(\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & b_{11} & b_{12} & \ldots & b_{1, n-r} \\
0 & 1 & \ldots & 0 & b_{21} & b_{22} & \ldots & b_{2, n-r} \\
& & \ddots & & \vdots & & & \\
0 & 0 & \ldots & 1 & b_{r 1} & b_{r 2} & \ldots & b_{r, n-r}
\end{array}\right)=\left(I_{r} \mid B\right)
$$

where I_{r} is the $r \times r$ identity matrix, and B is an $r \times n-r$ matrix, and overall H is $r \times n$.

We note that the columns could be rearranged which would result in codewords with the bit order re-arranged.

For $H=\left(\begin{array}{cccccccc}1 & 0 & \ldots & 0 & b_{11} & b_{12} & \ldots & b_{1, n-r} \\ 0 & 1 & \ldots & 0 & b_{21} & b_{22} & \ldots & b_{2, n-r} \\ & & \ddots & & \vdots & & & \\ 0 & 0 & \ldots & 1 & b_{r 1} & b_{r 2} & \ldots & b_{r, n-r}\end{array}\right)$ as given then for
$\vec{x} \in \mathbb{F}_{2}^{n}$ it acts on, we have $\vec{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{r} \\ x_{r+1} \\ \vdots \\ x_{n}\end{array}\right)$ where x_{r+1}, \ldots, x_{n} will be the
free variables in the solution of the homogeneous system $H \vec{x}=\overrightarrow{0}$ since the matrix H is already in row reduced echelon form.

The resulting code C will be such that $\operatorname{dim}(C)=k=n-r$ since there will be 2^{n-r} choices for x_{r+1}, \ldots, x_{n}.

Error Correcting in Linear Codes

Theorem

If no column of H consists entirely of zeros, and no two columns of H are the same, then the code C deriving from the solutions of $H \vec{x}=\overrightarrow{0}$ will correct one error.

Basically, what the restrictions on
$H=\left(\begin{array}{cccccccc}1 & 0 & \ldots & 0 & b_{11} & b_{12} & \ldots & b_{1, n-r} \\ 0 & 1 & \ldots & 0 & b_{21} & b_{22} & \ldots & b_{2, n-r} \\ & & \ddots & & \vdots & & & \\ 0 & 0 & \ldots & 1 & b_{r 1} & b_{r 2} & \ldots & b_{r, n-r}\end{array}\right)$ yield is that, since
$H: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{r}$, one has that $\operatorname{rank}(H)=r$, i.e. is as large as possible, which guarantees that $\delta=w_{\text {min }} \geq 3$.

For each given r there is a standard class of matrices H which have the property mentioned in the theorem and, in fact, the resulting codes have $\delta=3$, and these are called the Hamming Codes.

Given r let $n=2^{r}-1$ and $k=2^{r}-1-r$ and define H as follows:

$$
H=\left(\begin{array}{cccc}
0 & 0 & \ldots & 1 \\
\vdots & \vdots & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & \vdots & 1 \\
1 & 0 & \ldots & 1
\end{array}\right)_{r \times n}
$$

where the first column is the binary representation of 1 , (i.e. $00 \ldots 01$), the second is the binary representation of 2 (i.e. $00 \ldots 10$) and so on until the n-th column (where $n=2^{r}-1$), that is the bit string $11 \ldots 1$ of length r. And one can see that this matrix has no columns of zeros, and no duplicate columns.

Example: Let $r=3$ which implies $n=2^{3}-1=7$ so that $k=2^{3}-1-3=4$ which yields the matrix

$$
\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

where we observe that the columns correspond to the binary representations of the numbers $\{1, \ldots, 7\}$ and this code is called, not surprisingly, the Hamming $(7,4)$ code.

We can write out the codewords explicitly.
The matrix $H=\left(\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)$ row reduces (by a simple swap
of rows 1 and 3) to $H^{\prime}=\left(\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right)$ which yields the
system of equations:

$$
\begin{aligned}
& x_{1}=x_{3}+x_{5}+x_{7} \\
& x_{2}=x_{3}+x_{6}+x_{7} \\
& x_{4}=x_{5}+x_{6}+x_{7}
\end{aligned}
$$

where $x_{3}, x_{5}, x_{6}, x_{7} \in \mathbb{F}_{2}$ are free, yielding 2^{4} codewords of length 7 .

Hamming $(7,4)$ (built from the row-reduced version H^{\prime} of H)

$$
\begin{aligned}
C=\{ & 0000000,1110000,1001100,0111100, \\
& 0101010,1011010,1100110,0010110, \\
& 1101001,0011001,0100101,1010101, \\
& 1000011,0110011,0001111,1111111\}
\end{aligned}
$$

Error Correction?

If \vec{c} is a codeword in C and is offset by an error \vec{e}_{i} (i.e an error in bit i) then if $\vec{z}=\vec{c}+\vec{e}_{i}$ we have

$$
H^{\prime} \vec{z}=H^{\prime}\left(\vec{c}+\vec{e}_{i}\right)=H^{\prime} \vec{c}+H^{\prime} \vec{e}_{i}=\overrightarrow{0}+H^{\prime} \vec{e}_{i}
$$

where $H^{\prime} \vec{e}_{i}$ is the i-th column of H^{\prime} !

Example:

$$
\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

where the vector on the right hand side is the $3^{\text {rd }}$ column of H^{\prime}, which means the error is in the third position, so the correct codeword/vector is:

$$
\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

i.e. 0001111.

Recall that if a code C corrects e errors that

$$
\left|S_{e}(\vec{c})\right|=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{e}
$$

where $S_{e}(\vec{c})$ is the number of words that can be made by making at most e errors.

So if C is a code of length n with $\delta=3$ the number of words that can be made by making at most 1 errors in a given codeword is $S_{1}(\vec{c})$ where $\left|S_{1}(\vec{c})\right|=\binom{n}{0}+\binom{n}{1}=n+1$.

Since $\delta=3$ the $S_{1}(\vec{c})$ do not overlap so

$$
|C| \times(n+1) \leq 2^{n}
$$

and for the Hamming code $|C|=2^{n}$ where $k=2^{r}-1-r$ and $n=2^{r}-1$ so $n+1=2^{r}$ so $|C| \times(n+1)=2^{k} 2^{r}=2^{n}$.

In this situation, the code is said to be perfect.

