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Linear Codes

While codes can be constructed according to the δ ≥ 2e + 1 criterion, it is
not so simple to do.

However, if we use the fact that V = F
n
2 = F2 × F2 × · · · × F2 is a group,

then we can utilize all that we know about groups to construct codes
whose properties are much easier to determine.

Definition

A code C ⊆ F
n
2 is a linear if whenever ~x , ~y ∈ C so too is ~x + ~y ∈ C .

That is, C is actually a sub-group of V .
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By Lagrange’s theorem, if C ≤ F
n
2 is linear then |C |

∣

∣|Fn
2| = 2n, and so

|C | = 2k for some k ≤ n.

We refer to k as the dimension of C , which is consistent with the notion
of dimension from linear algebra since C is k-dimensional subspace of
V = F

n
2.
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So for a linear code C , we want to find the relationship between n, k and δ.

We have the following somewhat technical result called the ’Sphere
Packing Bound’.

Timothy Kohl (Boston University) MA294 Lecture April 9, 2024 4 / 26



Theorem

If C is a linear code of some length n and dimension k then if e is the
maximum number of errors which C will correct then

2n−k ≥

(

n
0

)

+

(

n
1

)

+

(

n
2

)

+ · · ·+

(

n
e

)

where

(

n
r

)

= n!
r !(n−r)! .
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Proof:

If ~c has length n then there are

(

n
r

)

ways of modifying r bits in ~c .

Let Se(~c) be the set of code words which can be obtained from ~c by
altering at most e bits.

We have

|Se(~c)| =

(

n
0

)

+

(

n
1

)

+

(

n
2

)

+ · · ·+

(

n
e

)

where

(

n
0

)

= 1.
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So if C corrects e errors then for ~c ,~c
′

distinct codewords in C we have

Se(~c) ∩ Se(~c
′

) = ∅

So V = F
n
2 contains |C | = 2k mutually disjoint subsets of size |Se(~c)|

which implies

2n ≥ 2k × |Se(~c)|

which implies 2n−k ≥ |Se(~c)| =

(

n
0

)

+

(

n
1

)

+

(

n
2

)

+ · · ·+

(

n
e

)
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For example, say n = 6, k = 3 and e = 2 then we must have

2n−k = 23 ≥

(

6
0

)

+

(

6
1

)

+

(

6
2

)

= 1 + 6 + 15 = 22

which therefore is impossible.
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Suppose instead n = 6, k = 3 and e = 1 then

2n−k = 23 ≥

(

6
0

)

+

(

6
1

)

= 1 + 6 = 7

so it’s not ruled out!

But this is not a guarantee that C would correct e = 1 errors.

We need more facts about Linear codes to pin this down.
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FACT: If C is a linear code then for ~a,~x ,~y ∈ C

∂(~x +~a, ~y +~a) = ∂(~x , ~y)

since both ~x and ~y are altered in the same positions by the addition of ~a.

Timothy Kohl (Boston University) MA294 Lecture April 9, 2024 10 / 26



With this in mind, we have the following definition.

Definition

If C is a linear code then the weight is defined by

w(~x) = ∂(~x ,~0)

for ~x ∈ C where ~0 is the bit vector of all zeros, i.e. the identity element.

What w(~x) measures then is the number of 1’s in ~x .
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Theorem

Let C be a linear code and let wmin be the minimum weight of any
codeword in C (except ~0 ∈ C) then δ = wmin.

i.e. The minimum distance is the minimum weight of all the non-zero
codewords in C .
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Proof.

Let ~c∗ be a codeword in C where w(~c∗) = wmin.
Since ~c∗ and ~0 are in C , we have

δ ≤ ∂(~c∗,~0) = w(~c∗) = wmin

However, if ~c1, ~c2 are two distinct codewords at minimum distance from
each other then ~c1 − ~c2 is a codeword since C is a group and

δ = ∂(~c1,~c2) = ∂(~c1 − ~c2,~c2 − ~c2) = ∂(~c1 − ~c2,~0) = w(~c1 − ~c2) ≥ wmin

and so δ = wmin

The virtue of this theorem is that it’s way easier to compute wmin!
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Construction of Linear Codes

As a linear code C is a subspace of the (finite) vector space V = F
n
2 then,

in fact, C must be the null-space of a matrix.

Let H be a binary matrix with n columns and ~x a bit string considered as
a column vector.

In particular ~0 will be used to denote the column vector











0
0
...
0











.

And if H~a = ~0 and H~b = ~0 then H(~a + ~b) = H~a + H~b = ~0 +~0 = ~0.
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That is, the set C = {~x ∈ F
n
2 | H~x = ~0} is a linear code.

And we call H the parity check matrix or simply check matrix.

Example: Let H =

(

1 0 1 0
0 1 1 1

)

and suppose

(

1 0 1 0
0 1 1 1

)









x1
x2
x3
x4









=

(

0
0

)

[We use the letter ’H’ for Hamming, which are the class of codes we wish
to explore.]
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Then solving this yields the system

x1 + x3 = 0

x2 + x3 + x4 = 0

and so x1 = −x3, x2 = −x3 − x4 where {x3, x4} are free variables









x1
x2
x3
x4









= x3









−1
−1
1
0









+ x4









0
−1
0
1









= x3









1
1
1
0









+ x4









0
1
0
1









where x3, x4 ∈ F2, which yields the code C = {0000, 1110, 0101, 1011}.
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In general, if C is to be a subspace of Fn
2 then we will assume that H has

the following form.

H =











1 0 . . . 0 b11 b12 . . . b1,n−r

0 1 . . . 0 b21 b22 . . . b2,n−r

. . .
...

0 0 . . . 1 br1 br2 . . . br ,n−r











= (Ir |B)

where Ir is the r × r identity matrix, and B is an r × n − r matrix, and
overall H is r × n.

We note that the columns could be rearranged which would result in
codewords with the bit order re-arranged.
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For H =











1 0 . . . 0 b11 b12 . . . b1,n−r

0 1 . . . 0 b21 b22 . . . b2,n−r

. . .
...

0 0 . . . 1 br1 br2 . . . br ,n−r











as given then for

~x ∈ F
n
2 it acts on, we have ~x =





















x1
...
xr
xr+1
...
xn





















where xr+1, . . . , xn will be the

free variables in the solution of the homogeneous system H~x = ~0 since the
matrix H is already in row reduced echelon form.

The resulting code C will be such that dim(C ) = k = n− r since there
will be 2n−r choices for xr+1, . . . , xn.
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Error Correcting in Linear Codes

Theorem

If no column of H consists entirely of zeros, and no two columns of H are
the same, then the code C deriving from the solutions of H~x = ~0 will
correct one error.

Basically, what the restrictions on

H =











1 0 . . . 0 b11 b12 . . . b1,n−r

0 1 . . . 0 b21 b22 . . . b2,n−r

. . .
...

0 0 . . . 1 br1 br2 . . . br ,n−r











yield is that, since

H : Fn

2 → F
r

2, one has that rank(H) = r , i.e. is as large as possible, which
guarantees that δ = wmin ≥ 3.
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For each given r there is a standard class of matrices H which have the
property mentioned in the theorem and, in fact, the resulting codes have
δ = 3, and these are called the Hamming Codes.

Given r let n = 2r − 1 and k = 2r − 1− r and define H as follows:

H =



















0 0 . . . 1
...

... . . . 1
...

...
...

...

0 1
... 1

1 0 . . . 1



















r×n

where the first column is the binary representation of 1, (i.e. 00 . . . 01), the
second is the binary representation of 2 (i.e. 00. . . 10) and so on until the
n-th column (where n = 2r − 1), that is the bit string 11 . . . 1 of length r .
And one can see that this matrix has no columns of zeros, and no
duplicate columns.
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Example: Let r = 3 which implies n = 23 − 1 = 7 so that
k = 23 − 1− 3 = 4 which yields the matrix





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





where we observe that the columns correspond to the binary
representations of the numbers {1, . . . , 7} and this code is called, not
surprisingly, the Hamming(7,4) code.
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We can write out the codewords explicitly.

The matrix H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 row reduces (by a simple swap

of rows 1 and 3) to H ′ =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



 which yields the

system of equations:

x1 = x3 + x5 + x7

x2 = x3 + x6 + x7

x4 = x5 + x6 + x7

where x3, x5, x6, x7 ∈ F2 are free, yielding 24 codewords of length 7.
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Hamming(7,4) (built from the row-reduced version H ′ of H)

C = {0000000, 1110000, 1001100, 0111100,

0101010, 1011010, 1100110, 0010110,

1101001, 0011001, 0100101, 1010101,

1000011, 0110011, 0001111, 1111111}

Error Correction?
If ~c is a codeword in C and is offset by an error ~ei (i.e an error in bit i)
then if ~z = ~c + ~ei we have

H ′~z = H ′(~c + ~ei ) = H ′~c + H ′~ei = ~0 + H ′~ei

where H ′~ei is the i -th column of H ′!
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Example:





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

























0
0
1
1
1
1
1





















=





1
1
0





where the vector on the right hand side is the 3rd column of H ′, which
means the error is in the third position, so the correct codeword/vector is:





















0
0
0
1
1
1
1





















i.e. 0001111.
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Recall that if a code C corrects e errors that

|Se(~c)| =

(

n
0

)

+

(

n
1

)

+ · · ·+

(

n
e

)

where Se(~c) is the number of words that can be made by making at most
e errors.

So if C is a code of length n with δ = 3 the number of words that can be
made by making at most 1 errors in a given codeword is S1(~c) where

|S1(~c)| =

(

n
0

)

+

(

n
1

)

= n + 1.
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Since δ = 3 the S1(~c) do not overlap so

|C | × (n + 1) ≤ 2n

and for the Hamming code |C | = 2n where k = 2r − 1− r and n = 2r − 1
so n+ 1 = 2r so |C | × (n + 1) = 2k2r = 2n.

In this situation, the code is said to be perfect.
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