MA294 Lecture

Timothy Kohl

Boston University

April 9, 2024

While codes can be constructed according to the $\delta \geq 2e + 1$ criterion, it is not so simple to do.

However, if we use the fact that $V = \mathbb{F}_2^n = \mathbb{F}_2 \times \mathbb{F}_2 \times \cdots \times \mathbb{F}_2$ is a group, then we can utilize all that we know about groups to construct codes whose properties are much easier to determine.

Definition A code $C \subseteq \mathbb{F}_2^n$ is a linear if whenever $\vec{x}, \vec{y} \in C$ so too is $\vec{x} + \vec{y} \in C$.

That is, C is actually a sub-group of V.

By Lagrange's theorem, if $C \leq \mathbb{F}_2^n$ is linear then $|C| ||\mathbb{F}_2^n| = 2^n$, and so $|C| = 2^k$ for some $k \leq n$.

We refer to k as the *dimension* of C, which is consistent with the notion of dimension from linear algebra since C is k-dimensional subspace of $V = \mathbb{F}_2^n$.

So for a linear code C, we want to find the relationship between n, k and δ .

We have the following somewhat technical result called the 'Sphere Packing Bound'.

Theorem

If C is a linear code of some length n and dimension k then if e is the maximum number of errors which C will correct then

$$2^{n-k} \ge {\binom{n}{0}} + {\binom{n}{1}} + {\binom{n}{2}} + \dots + {\binom{n}{e}}$$

where
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$
.

If \vec{c} has length *n* then there are $\binom{n}{r}$ ways of modifying *r* bits in \vec{c} .

Let $S_e(\vec{c})$ be the set of code words which can be obtained from \vec{c} by altering at most *e* bits.

We have

w

$$|S_e(\vec{c})| = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{e}$$
where $\binom{n}{0} = 1$.

So if C corrects e errors then for \vec{c}, \vec{c}' distinct codewords in C we have $S_e(\vec{c}) \cap S_e(\vec{c}') = \emptyset$

So $V = \mathbb{F}_2^n$ contains $|C| = 2^k$ mutually disjoint subsets of size $|S_e(\vec{c})|$ which implies

 $2^n \geq 2^k \times |S_e(\vec{c})|$

which implies
$$2^{n-k} \ge |S_e(\vec{c})| = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{e}$$

For example, say n = 6, k = 3 and e = 2 then we must have

$$2^{n-k} = 2^3 \ge \binom{6}{0} + \binom{6}{1} + \binom{6}{2} \\ = 1 + 6 + 15 = 22$$

which therefore is impossible.

Suppose instead n = 6, k = 3 and e = 1 then

$$2^{n-k} = 2^3 \ge \begin{pmatrix} 6 \\ 0 \end{pmatrix} + \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$

= 1 + 6 = 7

so it's not ruled out!

But this is not a guarantee that C would correct e = 1 errors.

We need more facts about Linear codes to pin this down.

FACT: If C is a linear code then for $\vec{a}, \vec{x}, \vec{y} \in C$

$$\partial(\vec{x}+\vec{a},\vec{y}+\vec{a})=\partial(\vec{x},\vec{y})$$

since both \vec{x} and \vec{y} are altered in the same positions by the addition of \vec{a} .

With this in mind, we have the following definition.

Definition

If C is a linear code then the weight is defined by

$$w(\vec{x}) = \partial(\vec{x},\vec{0})$$

for $\vec{x} \in C$ where $\vec{0}$ is the bit vector of all zeros, i.e. the identity element.

What $w(\vec{x})$ measures then is the number of 1's in \vec{x} .

Theorem

Let C be a linear code and let w_{min} be the minimum weight of any codeword in C (except $\vec{0} \in C$) then $\delta = w_{min}$.

i.e. The minimum distance is the minimum weight of all the non-zero codewords in ${\cal C}.$

Proof.

Let \vec{c}^* be a codeword in C where $w(\vec{c}^*) = w_{min}$. Since \vec{c}^* and $\vec{0}$ are in C, we have

$$\delta \leq \partial(\vec{c}^*, \vec{0}) = w(\vec{c}^*) = w_{min}$$

However, if \vec{c}_1 , \vec{c}_2 are two distinct codewords at minimum distance from each other then $\vec{c}_1 - \vec{c}_2$ is a codeword since *C* is a group and

$$\delta = \partial(\vec{c}_1, \vec{c}_2) = \partial(\vec{c}_1 - \vec{c}_2, \vec{c}_2 - \vec{c}_2) = \partial(\vec{c}_1 - \vec{c}_2, \vec{0}) = w(\vec{c}_1 - \vec{c}_2) \ge w_{min}$$

and so $\delta = w_{min}$

The virtue of this theorem is that it's way easier to compute w_{min} !

As a linear code C is a subspace of the (finite) vector space $V = \mathbb{F}_2^n$ then, in fact, C must be the null-space of a matrix.

Let *H* be a binary matrix with *n* columns and \vec{x} a bit string considered as a column vector.

In particular $\vec{0}$ will be used to denote the column vector $\begin{pmatrix} 0\\0\\\vdots\\ \end{pmatrix}$.

And if $H\vec{a} = \vec{0}$ and $H\vec{b} = \vec{0}$ then $H(\vec{a} + \vec{b}) = H\vec{a} + H\vec{b} = \vec{0} + \vec{0} = \vec{0}$.

That is, the set $C = \{ \vec{x} \in \mathbb{F}_2^n \mid H\vec{x} = \vec{0} \}$ is a linear code.

And we call H the parity check matrix or simply <u>check matrix</u>.

Example: Let
$$H = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 and suppose
 $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

[We use the letter 'H' for Hamming, which are the class of codes we wish to explore.]

Then solving this yields the system

$$x_1 + x_3 = 0$$

 $x_2 + x_3 + x_4 = 0$

and so $x_1 = -x_3$, $x_2 = -x_3 - x_4$ where $\{x_3, x_4\}$ are free variables

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$
$$= x_3 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

where $x_3, x_4 \in \mathbb{F}_2$, which yields the code $C = \{0000, 1110, 0101, 1011\}$.

In general, if C is to be a subspace of \mathbb{F}_2^n then we will assume that H has the following form.

$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1,n-r} \\ 0 & 1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2,n-r} \\ & \ddots & & \vdots & & & \\ 0 & 0 & \dots & 1 & b_{r1} & b_{r2} & \dots & b_{r,n-r} \end{pmatrix} = (I_r | B)$$

where I_r is the $r \times r$ identity matrix, and B is an $r \times n - r$ matrix, and overall H is $r \times n$.

We note that the columns could be rearranged which would result in codewords with the bit order re-arranged.

For
$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1,n-r} \\ 0 & 1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2,n-r} \\ & \ddots & & \vdots & & & \\ 0 & 0 & \dots & 1 & b_{r1} & b_{r2} & \dots & b_{r,n-r} \end{pmatrix}$$
 as given then for $\vec{x} \in \mathbb{F}_2^n$ it acts on, we have $\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix}$ where x_{r+1}, \dots, x_n will be the

free variables in the solution of the homogeneous system $H\vec{x} = \vec{0}$ since the matrix H is already in row reduced echelon form.

The resulting code C will be such that dim(C) = k = n - r since there will be 2^{n-r} choices for x_{r+1}, \ldots, x_n .

Theorem

If no column of H consists entirely of zeros, and no two columns of H are the same, then the code C deriving from the solutions of $H\vec{x} = \vec{0}$ will correct one error.

Basically, what the restrictions on $H = \begin{pmatrix} 1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1,n-r} \\ 0 & 1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2,n-r} \\ & \ddots & & \vdots & & \\ 0 & 0 & \dots & 1 & b_{r1} & b_{r2} & \dots & b_{r,n-r} \end{pmatrix}$ yield is that, since $H : \mathbb{F}_2^n \to \mathbb{F}_2^r, \text{ one has that } rank(H) = r, \text{ i.e. is as large as possible, which}$ guarantees that $\delta = w_{min} \ge 3$. For each given r there is a standard class of matrices H which have the property mentioned in the theorem and, in fact, the resulting codes have $\delta = 3$, and these are called the Hamming Codes.

Given r let $n = 2^r - 1$ and $k = 2^r - 1 - r$ and define H as follows:

	0	0		1	
	÷	÷		1	
H =	÷	÷	÷	÷	
	0	1	÷	1	
	$\setminus 1$	0		1)	r×n

where the first column is the binary representation of 1, (i.e. 00...01), the second is the binary representation of 2 (i.e. 00...10) and so on until the *n*-th column (where $n = 2^r - 1$), that is the bit string 11...1 of length *r*. And one can see that this matrix has no columns of zeros, and no duplicate columns.

Example: Let r = 3 which implies $n = 2^3 - 1 = 7$ so that $k = 2^3 - 1 - 3 = 4$ which yields the matrix

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

where we observe that the columns correspond to the binary representations of the numbers $\{1, \ldots, 7\}$ and this code is called, not surprisingly, the Hamming(7,4) code.

We can write out the codewords explicitly.
The matrix
$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$
 row reduces (by a simple swap
of rows 1 and 3) to $H' = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ which yields the

system of equations:

$$x_1 = x_3 + x_5 + x_7$$
$$x_2 = x_3 + x_6 + x_7$$
$$x_4 = x_5 + x_6 + x_7$$

where $x_3, x_5, x_6, x_7 \in \mathbb{F}_2$ are free, yielding 2⁴ codewords of length 7.

Hamming(7,4) (built from the row-reduced version H' of H)

$$C = \{0000000, 1110000, 1001100, 0111100, \\0101010, 1011010, 1100110, 0010110, \\1101001, 0011001, 0100101, 1010101, \\1000011, 0110011, 0001111, 111111\}$$

Error Correction? If \vec{c} is a codeword in C and is offset by an error \vec{e}_i (i.e an error in bit i) then if $\vec{z} = \vec{c} + \vec{e}_i$ we have

$$H'\vec{z} = H'(\vec{c} + \vec{e}_i) = H'\vec{c} + H'\vec{e}_i = \vec{0} + H'\vec{e}_i$$

where $H'\vec{e}_i$ is the *i*-th column of H'!

Example:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

where the vector on the right hand side is the 3^{rd} column of H', which means the error is in the third position, so the correct codeword/vector is:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

i.e. 0001111.

Timothy Kohl (Boston University)

Recall that if a code C corrects e errors that

$$|S_e(\vec{c})| = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{e}$$

where $S_e(\vec{c})$ is the number of words that can be made by making at most *e* errors.

So if *C* is a code of length *n* with $\delta = 3$ the number of words that can be made by making at most 1 errors in a given codeword is $S_1(\vec{c})$ where $|S_1(\vec{c})| = \binom{n}{0} + \binom{n}{1} = n + 1.$

Since $\delta = 3$ the $S_1(\vec{c})$ do not overlap so

$$|C| \times (n+1) \leq 2^n$$

and for the Hamming code $|C| = 2^n$ where $k = 2^r - 1 - r$ and $n = 2^r - 1$ so $n + 1 = 2^r$ so $|C| \times (n + 1) = 2^k 2^r = 2^n$.

In this situation, the code is said to be perfect.