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While codes can be constructed according to the § > 2e + 1 criterion, it is
not so simple to do.

However, if we use the fact that V =F] =F, x Fy x --- x 5 is a group,
then we can utilize all that we know about groups to construct codes
whose properties are much easier to determine.

Definition

A code C C [F7 is a linear if whenever X,y € C so too is X+ y € C.
That is, C is actually a sub-group of V.
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By Lagrange’s theorem, if C < Fj is linear then |C|||F5| = 2", and so
|C| = 2K for some k < n.

We refer to k as the dimension of C, which is consistent with the notion
of dimension from linear algebra since C is k-dimensional subspace of
V =T7.
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So for a linear code C, we want to find the relationship between n, k and §.

We have the following somewhat technical result called the 'Sphere
Packing Bound'.

Timothy Kohl (Boston University) MA294 Lecture April 9, 2024 4/26



Theorem

If C is a linear code of some length n and dimension k then if e is the
maximum number of errors which C will correct then

n—k n n n n
72 (g)+ () (2) ¢+ ()
ny n!
Where <r> = m
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If ¢ has length n then there are (rr)> ways of modifying r bits in C.

Let S.(C) be the set of code words which can be obtained from ¢ by
altering at most e bits.

s@=(5) () +(5) ()
where (O> 1

We have
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So if C corrects e errors then for E',E' distinct codewords in C we have

Se(3) N Se() =10

So V = FJ contains |C| = 2% mutually disjoint subsets of size |S.(c)|
which implies

which implies 27k > |S(¢)| = (3) + <'17> + (Z) toet <Z>
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For example, say n =6, k = 3 and e = 2 then we must have

e ()00

=1+6+15=22

which therefore is impossible.
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Suppose instead n =6, k = 3 and e = 1 then

e ()

=1+6=7

so it's not ruled out!
But this is not a guarantee that C would correct e = 1 errors.

We need more facts about Linear codes to pin this down.
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FACT: If C is a linear code then for 3,X,y € C

O(X+a,y+3a) =0(x,y)

since both X and y are altered in the same positions by the addition of &.
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With this in mind, we have the following definition.

Definition

If C is a linear code then the weight is defined by
w(X) = 9(%,0)

for X € C where 0 is the bit vector of all zeros, i.e. the identity element.

What w(X) measures then is the number of 1's in X.
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Let C be a linear code and let wp,, be the minimum weight of any
codeword in C (except 0 € C) then 6 = Wpjp.

i.e. The minimum distance is the minimum weight of all the non-zero
codewords in C.
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Proof.

Let ¢* be a codeword in C where w(c*) = Wpin.
Since ¢* and 0 are in C, we have

0 < 8(6*,6) = W(E*) = Whnin

However, if &, & are two distinct codewords at minimum distance from

each other then ¢; — G is a codeword since C is a group and

o= 8(81, 82) = 8(81 — 82, 82 — 82) = 8(81 — 82,6) = W(El — 82) > Wmin

and so 0 = Wpmjn O
v

The virtue of this theorem is that it's way easier to compute wp,;,!
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Construction of Linear Codes

As a linear code C is a subspace of the (finite) vector space V = 7 then,
in fact, C must be the null-space of a matrix.

Let H be a binary matrix with n columns and X a bit string considered as
a column vector.

0

. 0
In particular O will be used to denote the column vector
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That is, the set C = {X € F§ | HX = 0} is a linear code.

And we call H the parity check matrix or simply check matrix.

1010
Example: Let H = (0 11 1) and suppose

X1

101 0)\|x]|_ /o0

<0111> X3_<0>
X4

[We use the letter "H' for Hamming, which are the class of codes we wish
to explore.]
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Then solving this yields the system

x1+x3=0
xo+x3+x4=0

and so x; = —x3, X = —x3 — x4 Where {x3, x4} are free variables
X1 -1 0
X2 — x -1 + x -1
X3 - 1 4 0
X4 0 1
1 0
=X 1 =+ X 1
~ 81 1o
0 1

where x3, xa € F2, which yields the code C = {0000,1110,0101,1011}.
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In general, if C is to be a subspace of 5 then we will assume that H has
the following form.

10 ... 0 b11 b12 b17,,_,»
0 1 0 by by ... byn,

H= , = (I,|B)
00 ... 1 by bo ... bp,

where I, is the r x r identity matrix, and B is an r x n — r matrix, and
overall H is r x n.

We note that the columns could be rearranged which would result in
codewords with the bit order re-arranged.
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10 0 bix bz ... binpr
01 0 b1 by ... byps
For H = .
00 ... 1 b1 b ... brpr
X1
X € FY it acts on, we have X = xr where x,41, ..
Xr+1
Xn

as given then for

., Xp will be the

free variables in the solution of the homogeneous system HX = 0 since the
matrix H is already in row reduced echelon form.

The resulting code C will be such that dim(C) = k = n — r since there
will be 2"" choices for x,41,...
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Error Correcting in Linear Codes

If no column of H consists entirely of zeros, and no two columns of H are
the same, then the code C deriving from the solutions of HX = 0 will
correct one error.

Basically, what the restrictions on
1 0 ... 0 b11 b12 bl,n—r

01 ... 0 byy by ... b27n_,

H= yield is that, since

00 ... 1 by bo ... brpy
H : F5 — F/, one has that rank(H) = r, i.e. is as large as possible, which
guarantees that § = wyj, > 3.
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For each given r there is a standard class of matrices H which have the
property mentioned in the theorem and, in fact, the resulting codes have

6 = 3, and these are called the Hamming Codes.

Given rlet n=2"—1and kK =2" — 1 — r and define H as follows:

00 ... 1
1
H =
o1 : 1
10 ... 1

rxn

where the first column is the binary representation of 1, (i.e. 00...01), the
second is the binary representation of 2 (i.e. 00...10) and so on until the
n-th column (where n = 2" — 1), that is the bit string 11...1 of length r.

And one can see that this matrix has no columns of zeros, and no
duplicate columns.
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Example: Let r = 3 which implies n =23 — 1 = 7 so that
k =23 — 1 — 3 = 4 which yields the matrix

0001111
0110011
1010101

where we observe that the columns correspond to the binary

representations of the numbers {1,...,7} and this code is called, not
surprisingly, the Hamming(7,4) code.
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We can write out the codewords explicitly.
0001111

The matrix H= [ 0 1| row reduces (by a simple swap
1

1010101
ofrowsland3)toH =0 1 1 0 0 1 1] which yields the
0001111
system of equations:

X1 = X3 + X5 + X7
Xo = X3 + Xg + X7

X4 = X5 + Xg + X7

where x3, x5, x5, x7 € Fy are free, yielding 2* codewords of length 7.
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Hamming(7,4) (built from the row-reduced version H' of H)

C = {0000000, 1110000, 1001100, 0111100,
0101010,1011010, 1100110, 0010110,
1101001, 0011001, 0100101, 1010101,
1000011,0110011,0001111, 1111111}

Error Correction?
If Cis a codeword in C and is offset by an error & (i.e an error in bit /)
then if Z = ¢+ & we have

HzZ=H(Z+&)=Hze+H&=0+HE

where H'&; is the i-th column of H'!
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Example:

0

0
1010101\ |1 1
0110011 1{={1
0001111/ |1 0

1

1

where the vector on the right hand side is the 3™ column of H’, which
means the error is in the third position, so the correct codeword /vector is:

0

N = = o W )

i.e. 0001111.
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Recall that if a code C corrects e errors that

sqal=(g)+ (1) ++(2)

where S(C) is the number of words that can be made by making at most
e errors.

So if C is a code of length n with § = 3 the number of words that can be
made by making at most 1 errors in a given codeword is S1(C) where

15,(8)| = <g> + <;’) —n+t1.
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Since § = 3 the 51(¢) do not overlap so

IC] x (n+1) <2

and for the Hamming code |C| = 2" where k =2"—-1—rand n=2" -1
son+1=2"so|C|x(n+1)=2k2r =2

In this situation, the code is said to be perfect.
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