MA294 Lecture

Timothy Kohl

Boston University

April 11, 2024

Generating Functions

Recall, in the ring $F[x]$ (for F a field) the elements are of the form

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

for $a_{i} \in F$ where addition is performed degree by degree, and multiplication is carried out as follows:

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)\left(b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right) \\
& =\left(a_{0} b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots+\left(a_{n} b_{m}\right) x^{n+m}
\end{aligned}
$$

where, in particular, to determine the coefficient of x^{k} one considers which coefficients 'contribute' in degree k, in particular it is:

$$
a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k} b_{0}
$$

namely the those $a_{i} b_{j}$ where $i+j=k$.

As a result, since 1 is the multiplicative identity, one finds that, since $\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$ that

$$
U(F[x])=\left\{a_{0} \mid a_{0} \in F^{*}\right\}
$$

i.e. non-zero constant polynomials
i.e. $F[x]$ doesn't contain inverses for most of its elements!

If we extend our view from polynomials to power series (like in Calculus):

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

then one has a ring (which contains all polynomials) but with a much richer structure.

Definition

For F a field, the ring of formal power series is

$$
F[[x]]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots \mid a_{i} \in F\right\}
$$

where addition (like for polynomials) is degree by degree, and multiplication is given by:

$$
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right)=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

where

$$
\begin{aligned}
& c_{0}=a_{0} b_{0} \\
& c_{1}=a_{0} b_{1}+a_{1} b_{0} \\
& \vdots \\
& c_{k}=\sum_{t=0}^{k} a_{t} b_{k-t}
\end{aligned}
$$

The additive identity is $0+0 x+0 x^{2}+\ldots$ and multiplicative identity is $1+0 x+0 x^{2}+\ldots$ (Exercise!)

Two Important Points:

- A given series $\sum_{i=0}^{\infty} a_{i} x^{i}$ is determined by the sequence of coefficients a_{0}, a_{1}, \ldots
- The variable ' x ' is just an indeterminate, we don't consider questions of convergence as one might in calculus, for example, $F[[x]]$ contains series like $1+x+2 x^{2}+3 x^{3}+\ldots$ which by (say the ratio test) are divergent.

As indicated earlier $F[[x]]$ has a richer structure and contains all the polynomials in $F[x]$ as a subring.

In particular, (and most importantly for the applications we are trying to develop) many polynomials, for example $f(x)=1-x$ have inverses when viewed as elements of $F[[x]]$ in sharp contrast with the fact that $U(F[x])=F^{*}$.

Theorem

$\sum_{i=0}^{\infty} a_{i} x^{i} \in F[[x]]$ is invertible if and only if $a_{0} \neq 0$.

Proof:

If $\sum_{j=0}^{\infty} b_{j} x^{j}$ has the property that $\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right)=1$ then this implies

$$
\begin{aligned}
a_{0} b_{0} & =1 \\
a_{0} b_{1}+a_{1} b_{0} & =0 \\
a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} & =0
\end{aligned}
$$

Assuming $a_{0} \neq 0$ then $a_{0} b_{0}=1$ implies $b_{0}=1 / a_{0}$. So now, let's try and determine b_{1}.
Looking at the second equation $a_{0} b_{1}+a_{1} b_{0}=0$ we use what we've just discovered to rewrite this as

$$
a_{0} b_{1}+a_{1}\left(1 / a_{0}\right)=0
$$

which can be solved to yield $b_{1}=\left(-a_{1} / a_{0}^{2}\right)$, and we can then solve for b_{2} by using the third equation:

$$
a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=0
$$

which, given that we have already determined b_{0} and b_{1} (and we alread know all the a_{i} since they are given in the first place) we can solve for b_{2} to get

$$
b_{2}=a_{1}^{2} a_{0}^{-2}-a_{2} a_{0}^{-1}
$$

and so on...

The point is that $a_{0} \neq 0$ implies the existence of b_{0} and therefore all the remaining b_{j} which therefore yields that

$$
\sum_{j=0}^{\infty} b_{j} x^{j}
$$

is the inverse of $\sum_{i=0}^{\infty} a_{i} x^{i}$.
What we have shown then is that

$$
U(F[[x]])=\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{0} \neq 0\right\}
$$

which is much 'larger' than $U(F[x])$ in that it contains more than just 'constants'.

How about $\frac{1}{1-x}$? i.e. $(1-x)^{-1}$

Even though $1-x$ is polynomial, it is technically a series, it's just that the coefficients of all terms beyond degree 1 are zero.

And since the constant term of $1-x$ is non-zero, it has an inverse, which (if you think about it) is a series rather than a polynomial, so it will have infinitely many non-zero terms. Let's find it!

$$
\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right)(1-x)=1
$$

implies (after distributing the $(1-x)$) that

$$
b_{0}+\left(b_{1}-b_{0}\right) x+\left(b_{2}-b_{1}\right) x^{2}+\cdots=1
$$

$b_{0}+\left(b_{1}-b_{0}\right) x+\left(b_{2}-b_{1}\right) x^{2}+\cdots=1=1+0 x+0 x^{2}+\ldots$
implies that $b_{0}=1$, and since $b_{1}-b_{0}=0$ then $b_{1}=1$, and since $b_{2}-b_{1}=0$ then $b_{2}=1$ etc.

Therefore

$$
\frac{1}{1-x}=1+x+x^{2}+\ldots
$$

which should be a familiar fact from Calculus! (i.e. geometric series)

And keep in mind, this is formal algebra, we are not concerned about convergence, so we don't 'restrict' x to the interval $(-1,1)$ which one usually does in that setting.

In general, if $B(x)$ is a polynomial in $F[x]$ then we may regard it as a series in $F[[x]]$ and, if it's invertible, denote its inverse $B(x)^{-1}=\frac{1}{B(x)}$ and if $A(x) \in F[x]$ too, then we have $\frac{A(x)}{B(x)} \in F[[x]]$.

The series for $\frac{A(x)}{B(x)}$ can be computed by a technique known as long division even though the result is generally a series and not a polynomial.

However, this is not terribly efficient, instead we can use a technique that you first see in Calculus 2 typically.

Partial Fractions

$\frac{A(x)}{B(x)}$ is not unfamiliar, recall the technique of partial fractions.
Example: If $B(x)=S(x) T(x)$ where $\operatorname{gcd}(S(x), T(x))=1$ and $\operatorname{deg}(A(x))<\operatorname{deg}(B(x))$ then there exists polynomials $F(x), G(x)$ (where $\operatorname{deg}(F)<\operatorname{deg}(S)$ and $\operatorname{deg}(G)<\operatorname{deg}(T))$ such that

$$
\frac{A(x)}{B(x)}=\frac{F(x)}{S(x)}+\frac{G(x)}{T(x)}
$$

For example, since $2-3 x+x^{2}=(1-x)(2-x)$ then

$$
\frac{5-3 x}{2-3 x+x^{2}}=\frac{2}{1-x}+\frac{1}{2-x}
$$

where, indeed, the numerators on the right are lower degree than the denominators.

The partial fractions algorithm is based on the following basic fact.

Theorem

Let F be a field and $A(x), B(x) \in F[x]$ such that
(i) $\operatorname{deg}(A(x))<\operatorname{deg}(B(x))$
(ii) $B(x)=S(x) T(x)$ where $\operatorname{gcd}(S(x), T(x))=1$
(iii) $B_{0} \neq 0$

Then there are polynomials $f(x)$ and $g(x)$ such that $\operatorname{deg}(f(x))<\operatorname{deg}(S(x))$ and $\operatorname{deg}(g(x))<\operatorname{deg}(T(x))$ where

$$
\frac{A(x)}{B(x)}=\frac{f(x)}{S(x)}+\frac{g(x)}{T(x)}
$$

where this equation holds in $F[[x]]$.

As far as the determination of the numerators, that is a computational problem, fundamentally a linear algebra question.

Example: $\frac{2+3 x+x^{2}}{(1-x)(2+x)(3-x)}=\frac{A}{1-x}+\frac{B}{2+x}+\frac{C}{3-x}$

So how do we find A, B, C ?

If we multiply the above equation by the denominator on the left, $(1-x)(2+x)(3-x)$ we get the following

$$
2+3 x+x^{2}=A(2+x)(3-x)+B(1-x)(3-x)+C(1-x)(2+x)
$$

which can be simplified.

$$
\begin{aligned}
2+3 x+x^{2} & =A(2+x)(3-x)+B(1-x)(3-x)+C(1-x)(2+x) \\
& =A\left(6+x-x^{2}\right)+B\left(3-4 x+x^{2}\right)+C\left(2-x-x^{2}\right) \\
& =(6 A+3 B+2 C)+(A-4 B-C) x+(-A+B-C) x^{2}
\end{aligned}
$$

So by equating coefficients, this implies

$$
\begin{array}{r}
6 A+3 B+2 C=2 \\
A-4 B-C=3 \\
-A+B-C=1
\end{array}
$$

To solve for A, B, and C we can employ different strategies, but basically we want to eliminate variables.

So if we add the second and third equations:

$$
\begin{array}{r}
A-4 B-C=3 \\
-A+B-C=1
\end{array}
$$

we get $-3 B-2 C=4$.

And if we add $6(-A+B-C=1)$, namely $-6 A+6 B-6 C=6$ to the first equation $6 A+3 B+2 C=2$ we get $9 B-4 C=8$ resulting in the system

$$
\begin{array}{r}
-3 B-2 C=4 \\
9 B-4 C=8
\end{array}
$$

which can be solved to yield $C=-2$ and $B=0$, which, in turn, implies $A=1$.

As such

$$
\begin{aligned}
\frac{2+3 x+x^{2}}{(1-x)(2+x)(3-x)} & =\frac{A}{1-x}+\frac{B}{2+x}+\frac{C}{3-x} \\
& =\frac{1}{1-x}-\frac{2}{3-x}
\end{aligned}
$$

and we note that, for examples like the one we just did, where the denominators are all distinct, that one could use a simpler approach to solve for A, B, and C.

Going back to this stage of the calculation:

$$
2+3 x+x^{2}=A(2+x)(3-x)+B(1-x)(3-x)+C(1-x)(2+x)
$$

we observe that this is true for all $x \in F$ so, in particular we can let $x=1$, (which makes $1-x=0$!):

$$
\begin{aligned}
2+3 \cdot 1+1^{2} & =A(2+1)(3-1)+B(1-1)(3-1)+C(1-1)(2+1) \\
& \downarrow \\
6 & =A \cdot 6
\end{aligned}
$$

namely that $A=1$, and similarly if we let $x=3$ two of the terms vanish to yield $20=C \cdot(-10)$ which implies $C=-2$ of course, a nd similarly, letting $x=-2$ yields $B=0$.

You may recall a variation of the partial fractions algorithm when one has repeated factors.

If $B(x)=P(x)^{m}$ where $\operatorname{deg}(A(x))<\operatorname{deg}(B(x))$ one has

$$
\frac{A(x)}{B(x)}=\frac{H_{1}(x)}{P(x)^{1}}+\frac{H_{2}(x)}{P(x)^{2}}+\cdots+\frac{H_{m}(x)}{P(x)^{m}}
$$

We consider an example:

$$
\frac{x^{3}+x^{2}+x+1}{(x-1)(x-2)^{3}}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}+\frac{D}{(x-2)^{3}}
$$

which is a step up in computational, but not theoretical complexity. If we do the same 'multiply by the denominator on the left' we get

$$
\begin{aligned}
x^{3}+x^{2}+x+1= & A(x-2)^{3}+B(x-1)(x-2)^{2}+ \\
& C(x-1)(x-2)+D(x-1) \\
\downarrow & \\
= & (A+B) x^{3}+(-6 A-5 B+C) x^{2}+ \\
& (12 A+8 B-3 C+D) x^{2}+(-8 A-4 B+2 C-D)
\end{aligned}
$$

And if we set $x=2$ we immediately find that $D=15$, and letting $x=1$ we find that $A=-4$ which, since $A+B=1$ yields $B=5$, and, from $-6 A-5 B+C=1$ that $C=2$.

If one has had linear algebra fairly recently, one could solve the previous problem using matrices, namely

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-6 & -5 & 1 & 0 \\
12 & 8 & -3 & 1 \\
-8 & -4 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

whose solution

$$
\left(\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right)=\left(\begin{array}{c}
-4 \\
5 \\
2 \\
15
\end{array}\right)
$$

is unique (which is guaranteed by the theorem) and agrees with the method used earlier.

