MA294 Lecture

Timothy Kohl

Boston University

April 16, 2024

Generating Functions

Sequences $\left\{u_{n}\right\}$ for $n=0,1, \ldots$, particularly recursively defined ones, can be understood and analyzed by using the terms in the sequence as coefficients of an infinite series

$$
U(x)=u_{0}+u_{1} x+u_{2} x^{2}+\ldots
$$

which is called the (ordinary) generating function for $\left\{u_{n}\right\}$.

We should note that $U(x)$ is not really a function, and again, we are avoiding discussions of convergence as they are irrelevent.

The principle idea is the following:
(i) Take the series $U(x)$ and utilize the 'recurrence relation' (namely the rule which determines how a given u_{n} depends on the previous terms u_{i} for $i<n)$, to find an equation that $U(x)$ satisfies.
(ii) Use this equation to come up with an 'explicit', that is non-recursive formula for the terms $\left\{u_{n}\right\}$. That is, we want to find an explicit function $f(n)$ for $n=0,1, \ldots$, such that $u_{n}=f(n)$.
(iii) The basis for this function is that the equation $U(x)$ satisfies, gives rise to a power series, similar to the geometric (or other) series for example, whose determination will require a fair amount of algebra, including some of the facts about the partial fractions decomposition of a rational function.

The prime example of such a sequence that can be analyze this way is the Fibonacci Sequence $\left\{f_{n}\right\}$ defined as follows:

$$
f_{0}=0 f_{1}=1, f_{n+1}=f_{n}+f_{n-1} \text { for } n>1
$$

so in particular $f_{2}=f_{1}+f_{0}=1+0=1, f_{3}=f_{2}+f_{1}=1+1=2$, namely $\{0,1,1,2,3,5,8,13, \ldots\}$.

For sequences like the Fibonacci sequence, our goal is to be able to determine the n-the Fibonacci number f_{n} without needing to compute all the f_{i} for $i<n$. (i.e. what is termed a closed formula for f_{n})

Without going into too much detail, suffice it to say that the Fibonacci sequence is ubiquitous throughout many areas of mathematics.

As it is a fairly detailed calculation, we shall return to the Fibonacci numbers after examining a number of more modest examples first, to get a feel for the techniques involved.

Consider the sequence $\left\{u_{n}\right\}$ defined by $u_{0}=1, u_{n}=3 u_{n-1}$ where now

$$
U(x)=u_{0}+u_{1} x+u_{2} x^{2}+u_{3} x^{3}+u_{4} x^{4}+\ldots
$$

so the question is, what 'equation' does $U(x)$ satisfy? Observe:

$$
\begin{aligned}
U(x) & =u_{0}+u_{1} x+u_{2} x^{2}+u_{3} x^{3}+u_{4} x^{4}+\ldots \\
& =u_{0}+\left(3 u_{0}\right) x+\left(3 u_{1}\right) x^{2}+\left(3 u_{2}\right) x^{3}+\left(3 u_{3}\right) x^{4}+\ldots \\
& =u_{0}+\left(3 u_{0} x+3 u_{1} x^{2}+3 u_{2} x^{3}+3 u_{3} x^{4}+\ldots\right) \\
& =u_{0}+3\left(u_{0} x+u_{1} x^{2}+u_{2} x^{3}+u_{3} x^{4}+\ldots\right) \\
& =u_{0}+3 x\left(u_{0}+u_{1} x+u_{2} x^{2}+u_{3} x^{3}+\ldots\right) \\
& =1+3 x U(x)
\end{aligned}
$$

which can be solved to yield $U(x)=\frac{1}{1-3 x}$

So now we know that $U(x)=u_{0}+u_{1} x+\cdots=\frac{1}{1-3 x}$ but the key fact which we invoke now is that $\frac{1}{1-3 x}$ is expressible as a series, indeed a geometric series.

That is, we know

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

So by replacing ' x ' by $3 x$ above we get:

$$
\begin{aligned}
\frac{1}{1-3 x} & =1+3 x+(3 x)^{2}+(3 x)^{3}+\ldots \\
& =1+3 x+3^{2} x^{2}+3^{3} x^{3}+\ldots \\
& =\sum_{n=0}^{\infty} 3^{n} x^{n}
\end{aligned}
$$

So we now bridge these two expressions:

$$
\begin{aligned}
U(x) & =\sum_{n=0}^{\infty} u_{n} x^{n} \\
& =\sum_{n=0}^{\infty} 3^{n} x^{n}
\end{aligned}
$$

the conclusion being that $u_{n}=3^{n}$ for all n.

This is not a super difficult example in that one could observe the pattern that $u_{0}=1, u_{1}=3 \cdot 1=3$, so $u_{2}=3 u_{1}=3 \cdot 3=3^{2}$, etc. but as we'll see, there are more complicated examples where simply computing 'the first few terms' is not quite sufficient to get the explicit formula for u_{n} for all n.

More Generating Function Examples

A simple way to increase the complexity is to add an extra 'constant' term to the recurrence.

Let's take our last example and let $u_{0}=1$ as before, but define $u_{n}=3 u_{n-1}+1$ which will be a different sequence, but not simply $u_{n}=3^{n}+1$ (which isn't the formula).

Again, we write down a $U(x)$ series and try to determine an equation it satisfies.

$$
\begin{aligned}
U(x) & =u_{0}+u_{1} x+u_{2} x^{2}+u_{3} x^{3}+u_{4} x^{4}+\ldots \\
& =u_{0}+\left(3 u_{0}+1\right) x+\left(3 u_{1}+1\right) x^{2}+\left(3 u_{2}+1\right) x^{3}+\left(3 u_{3}+1\right) x^{4}+\ldots \\
& =u_{0}+\left(3 u_{0} x+3 u_{1} x^{2}+3 u_{2} x^{3}+3 u_{3} x^{4}+\ldots\right)+\left(x+x^{2}+x^{3}+x^{4}+.\right. \\
& =u_{0}+3 x\left(u_{0}+u_{1} x+u_{2} x^{2}+u_{3} x^{3}+\ldots\right)+\left(x+x^{2}+x^{3}+x^{4}+\ldots\right) \\
& =1+3 x U(x)+\left[1+x+x^{2}+x^{3}+\ldots\right]-1
\end{aligned}
$$

which simplifies to $U(x)=1+3 x U(x)+\frac{1}{1-x}-1$.

Solving for $U(x)$ yields

$$
\begin{aligned}
U(x)(1-3 x) & =1+\frac{1}{1-x}-1 \\
& \downarrow \\
U(x) & =\frac{1}{(1-3 x)(1-x)}
\end{aligned}
$$

So let's determine the coefficients in the series for $U(x)$, based on the series representations of $\frac{1}{1-3 x}$ and $\frac{1}{1-x}$.

Using the partial fractions theorem there are constants A, B such that:

$$
U(x)=\frac{1}{(1-3 x)(1-x)}=\frac{A}{1-3 x}+\frac{B}{1-x}
$$

which can be solved to yield $A=\frac{3}{2}, B=-\frac{1}{2}$ which implies

$$
U(x)=\frac{3}{2} \sum_{n=0}^{\infty}(3 x)^{n}-\frac{1}{2} \sum_{n=0}^{\infty} x^{n}
$$

which, since $U(x)=u_{0}+u_{1} x+\ldots$ implies that $u_{n}=\frac{3}{2} 3^{n}-\frac{1}{2}$ for each n.

So we've determined that $u_{n}=\frac{3}{2} 3^{n}-\frac{1}{2}$ from this analysis.

It's still good to 'verify' that this is indeed the formula for the $n^{\text {th }}$ term.
$u_{0}=1$ implies $u_{1}=3\left(u_{0}\right)+1=4$ and by the forumala

$$
u_{1}=\frac{3}{2} 3^{1}-\frac{1}{2}=\frac{9}{2}-\frac{1}{2}=4
$$

etc.

Now let's get back to the Fibonacci sequence, which is a bit more involved, partly because the recrurrence $f_{n}=f_{n-1}+f_{n-2}$ involves three terms of the sequence as opposed to the two in the example, $u_{n}=3 u_{n-1}$.

$$
\begin{aligned}
F(x) & =f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}+f_{4} x^{4}+\ldots \\
& =f_{0}+f_{1} x+\left(f_{0}+f_{1}\right) x^{2}+\left(f_{1}+f_{2}\right) x^{3}+\left(f_{2}+f_{3}\right) x^{4}+\ldots \\
& =f_{0}+f_{1} x+\left(f_{0} x^{2}+f_{1} x^{3}+f_{2} x^{4}+\ldots\right)+\left(f_{1} x^{2}+f_{2} x^{3}+f_{3} x^{4}+\ldots\right) \\
& =f_{0}+f_{1} x+x^{2}\left(f_{0}+f_{1} x+f_{2} x^{2}+\ldots\right)+x\left(f_{1} x+f_{2} x^{2}+f_{3} x^{3}+\ldots\right) \\
& =f_{0}+f_{1} x+x^{2} F(x)+x\left(F(x)-f_{0}\right)
\end{aligned}
$$

And if we recall that $f_{0}=0, f_{1}=1$ then this boils down to the formula

$$
\begin{aligned}
F(x) & =x+x^{2} F(x)+x F(x) \\
& \downarrow \\
F(x) & =\frac{x}{1-x-x^{2}}
\end{aligned}
$$

As $F(x)=\frac{x}{1-x-x^{2}}$ we would like to utilize partial fractions to express this in terms of simple fractions which will yield geometric series of some sort.

The subtle part is factoring the denominator $1-x-x^{2}$ as $(1-a x)(1-b x)$ and ultimately write

$$
F(x)=\frac{A}{1-a x}+\frac{B}{1-b x}
$$

for some constants A and B.

If $1-x-x^{2}=(1-a x)(1-b x)=1-(a+b) x+a b x^{2}$ then $a+b=1$
and $a b=-1$, facts we will use soon.

So
$(1-a x)(1-b x)=a\left(\frac{1}{a}-x\right) b\left(\frac{1}{b}-x\right)=a b\left(\frac{1}{a}-x\right)\left(\frac{1}{b}-x\right)=a b\left(x-\frac{1}{a}\right)\left(x-\frac{1}{b}\right)$ and since $a b=-1$ we get
$1-x-x^{2}=(1-a x)(1-b x)=-\left(x-\frac{1}{a}\right)\left(x-\frac{1}{b}\right)$

Now $1-x-x^{2}=-x^{2}-x+1$ has roots given by the quadratic formula, namely

$$
\frac{1 \pm \sqrt{5}}{-2}=\frac{-1 \pm \sqrt{5}}{2}
$$

So since

$$
1-x-x^{2}=-\left(x-\frac{1}{a}\right)\left(x-\frac{1}{b}\right)
$$

whose roots are $\frac{1}{a}$ and $\frac{1}{b}$ then we can assume that

$$
\frac{1}{a}=\frac{-1+\sqrt{5}}{2} \text { and } \frac{1}{b}=\frac{-1-\sqrt{5}}{2}
$$

which means that

$$
\begin{aligned}
a & =\frac{2}{-1+\sqrt{5}} \\
& =\frac{1+\sqrt{5}}{2} \\
b & =\frac{2}{-1-\sqrt{5}} \\
& =\frac{1-\sqrt{5}}{2}
\end{aligned}
$$

So..

$$
\begin{aligned}
\frac{x}{1-x-x^{2}} & =\frac{x}{(1-a x)(1-b x)} \\
& =\frac{A}{1-a x}+\frac{B}{1-b x} \\
& \downarrow \\
x & =A(1-b x)+B(1-a x)
\end{aligned}
$$

which can be solved to yield $A=\frac{1}{\sqrt{5}}, B=-\frac{1}{\sqrt{5}}$ so that

$$
F(x)=\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} a^{n} x^{n}-\sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} b^{n} x^{n}
$$

which implies, ultimately that $f_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}$

Now, instead of 'a' and ' b ' we write $\varphi=\frac{1+\sqrt{5}}{2}$ and $\bar{\varphi}=\frac{1-\sqrt{5}}{2}$ where we refer to φ is the 'golden mean' or 'golden ratio' which we'll talk about more in a moment.

So we've established that $f_{n}=\frac{\varphi^{n}-\bar{\varphi}^{n}}{\sqrt{5}}$ for each $n \geq 0$ and given that $\varphi=\frac{1+\sqrt{5}}{2}$ and $\bar{\varphi}=\frac{1-\sqrt{5}}{2}$ it is perhaps not altogether obvious why

$$
\frac{\varphi^{n}-\bar{\varphi}^{n}}{\sqrt{5}}
$$

is an integer, even though it must be as it does equal f_{n} and each f_{n} is patently a whole number.

The Golden Mean

Last time, we showed that for the Fibonacci Sequence $\left\{f_{n}\right\}$ defined by $f_{0}=1, f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$ that

$$
f_{n}=\frac{\varphi^{n}-\bar{\varphi}^{n}}{\sqrt{5}}
$$

which is surprising given that $\varphi=\frac{1+\sqrt{5}}{2}$ and $\bar{\varphi}=\frac{1-\sqrt{5}}{2}$ are not whole numbers.

Nonetheless, this formula does reproduce the terms of f_{n}, for example:

$$
\begin{aligned}
\frac{\varphi^{0}-\bar{\varphi}^{0}}{\sqrt{5}} & =\frac{1-1}{\sqrt{5}} \\
& =0 \\
\frac{\varphi^{1}-\bar{\varphi}^{1}}{\sqrt{5}} & =\frac{\sqrt{5}}{\sqrt{5}} \\
& =1 \\
\frac{\varphi^{2}-\bar{\varphi}^{2}}{\sqrt{5}} & =\frac{\sqrt{5}}{\sqrt{5}} \\
& =1 \\
\frac{\varphi^{3}-\bar{\varphi}^{3}}{\sqrt{5}} & =\frac{2 \sqrt{5}}{\sqrt{5}} \\
& =2
\end{aligned}
$$

