
MA294 Lecture

Timothy Kohl

Boston University

April 16, 2024

Timothy Kohl (Boston University) MA294 Lecture April 16, 2024 1 / 23



Generating Functions

Sequences {un} for n = 0, 1, . . . , particularly recursively defined ones, can
be understood and analyzed by using the terms in the sequence as
coefficients of an infinite series

U(x) = u0 + u1x + u2x
2 + . . .

which is called the (ordinary) generating function for {un}.

We should note that U(x) is not really a function, and again, we are
avoiding discussions of convergence as they are irrelevent.
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The principle idea is the following:

(i) Take the series U(x) and utilize the ’recurrence relation’ (namely the
rule which determines how a given un depends on the previous terms ui for
i < n), to find an equation that U(x) satisfies.

(ii) Use this equation to come up with an ’explicit’, that is non-recursive
formula for the terms {un}. That is, we want to find an explicit function
f (n) for n = 0, 1, . . . , such that un = f (n).

(iii) The basis for this function is that the equation U(x) satisfies, gives
rise to a power series, similar to the geometric (or other) series for
example, whose determination will require a fair amount of algebra,
including some of the facts about the partial fractions decomposition of a
rational function.
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The prime example of such a sequence that can be analyze this way is the
Fibonacci Sequence {fn} defined as follows:

f0 = 0 f1 = 1, fn+1 = fn + fn−1 for n > 1

so in particular f2 = f1 + f0 = 1 + 0 = 1, f3 = f2 + f1 = 1 + 1 = 2, namely
{0, 1, 1, 2, 3, 5, 8, 13, . . . }.
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For sequences like the Fibonacci sequence, our goal is to be able to
determine the n-the Fibonacci number fn without needing to compute all
the fi for i < n. (i.e. what is termed a closed formula for fn)

Without going into too much detail, suffice it to say that the Fibonacci
sequence is ubiquitous throughout many areas of mathematics.

As it is a fairly detailed calculation, we shall return to the Fibonacci
numbers after examining a number of more modest examples first, to get
a feel for the techniques involved.
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Consider the sequence {un} defined by u0 = 1, un = 3un−1 where now

U(x) = u0 + u1x + u2x
2 + u3x

3 + u4x
4 + . . .

so the question is, what ’equation’ does U(x) satisfy? Observe:

U(x) = u0 + u1x + u2x
2 + u3x

3 + u4x
4 + . . .

= u0 + (3u0)x + (3u1)x
2 + (3u2)x

3 + (3u3)x
4 + . . .

= u0 + (3u0x + 3u1x
2 + 3u2x

3 + 3u3x
4 + . . . )

= u0 + 3(u0x + u1x
2 + u2x

3 + u3x
4 + . . . )

= u0 + 3x(u0 + u1x + u2x
2 + u3x

3 + . . . )

= 1 + 3xU(x)

which can be solved to yield U(x) = 1
1−3x
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So now we know that U(x) = u0 + u1x + · · · = 1
1−3x but the key fact

which we invoke now is that 1
1−3x is expressible as a series, indeed a

geometric series.

That is, we know

1

1− x
= 1 + x + x

2 + x
3 + . . .

So by replacing ’x ’ by 3x above we get:

1

1− 3x
= 1 + 3x + (3x)2 + (3x)3 + . . .

= 1 + 3x + 32x2 + 33x3 + . . .

=

∞
∑

n=0

3nxn
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So we now bridge these two expressions:

U(x) =

∞
∑

n=0

unx
n

=
∞
∑

n=0

3nxn

the conclusion being that un = 3n for all n.

This is not a super difficult example in that one could observe the pattern
that u0 = 1, u1 = 3 · 1 = 3, so u2 = 3u1 = 3 · 3 = 32, etc. but as we’ll see,
there are more complicated examples where simply computing ’the first
few terms’ is not quite sufficient to get the explicit formula for un for all n.
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More Generating Function Examples

A simple way to increase the complexity is to add an extra ’constant’ term
to the recurrence.

Let’s take our last example and let u0 = 1 as before, but define
un = 3un−1 + 1 which will be a different sequence, but not simply
un = 3n + 1 (which isn’t the formula).

Again, we write down a U(x) series and try to determine an equation it
satisfies.
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U(x) = u0 + u1x + u2x
2 + u3x

3 + u4x
4 + . . .

= u0 + (3u0 + 1)x + (3u1 + 1)x2 + (3u2 + 1)x3 + (3u3 + 1)x4 + . . .

= u0 + (3u0x + 3u1x
2 + 3u2x

3 + 3u3x
4 + . . . ) + (x + x

2 + x
3 + x

4 + .

= u0 + 3x(u0 + u1x + u2x
2 + u3x

3 + . . . ) + (x + x
2 + x

3 + x
4 + . . . )

= 1 + 3xU(x) +
[

1 + x + x
2 + x

3 + . . .
]

− 1

which simplifies to U(x) = 1 + 3xU(x) + 1
1−x

− 1.
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Solving for U(x) yields

U(x)(1 − 3x) = 1 +
1

1− x
− 1

↓

U(x) =
1

(1− 3x)(1 − x)

So let’s determine the coefficients in the series for U(x), based on the
series representations of 1

1−3x and 1
1−x

.
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Using the partial fractions theorem there are constants A, B such that:

U(x) =
1

(1− 3x)(1 − x)
=

A

1− 3x
+

B

1− x

which can be solved to yield A = 3
2 , B = −1

2 which implies

U(x) =
3

2

∞
∑

n=0

(3x)n − 1

2

∞
∑

n=0

x
n

which, since U(x) = u0 + u1x + . . . implies that un = 3
23

n − 1
2 for each n.
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So we’ve determined that un = 3
23

n − 1
2 from this analysis.

It’s still good to ’verify’ that this is indeed the formula for the nth term.

u0 = 1 implies u1 = 3(u0) + 1 = 4 and by the forumala

u1 =
3

2
31 − 1

2
=

9

2
− 1

2
= 4

etc.
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Now let’s get back to the Fibonacci sequence, which is a bit more
involved, partly because the recrurrence fn = fn−1 + fn−2 involves three
terms of the sequence as opposed to the two in the example, un = 3un−1.
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F (x) = f0 + f1x + f2x
2 + f3x

3 + f4x
4 + . . .

= f0 + f1x + (f0 + f1)x
2 + (f1 + f2)x

3 + (f2 + f3)x
4 + . . .

= f0 + f1x + (f0x
2 + f1x

3 + f2x
4 + . . . ) + (f1x

2 + f2x
3 + f3x

4 + . . . )

= f0 + f1x + x
2(f0 + f1x + f2x

2 + . . . ) + x(f1x + f2x
2 + f3x

3 + . . . )

= f0 + f1x + x
2
F (x) + x(F (x) − f0)

And if we recall that f0 = 0, f1 = 1 then this boils down to the formula

F (x) = x + x
2
F (x) + xF (x)

↓
F (x) =

x

1− x − x2
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As F (x) = x

1−x−x2
we would like to utilize partial fractions to express this

in terms of simple fractions which will yield geometric series of some sort.

The subtle part is factoring the denominator 1− x − x2 as
(1− ax)(1− bx) and ultimately write

F (x) =
A

1− ax
+

B

1− bx

for some constants A and B .
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If 1− x − x2 = (1− ax)(1− bx) = 1− (a + b)x + abx2 then a + b = 1
and ab = −1, facts we will use soon.

So
(1−ax)(1−bx) = a(1

a
−x)b( 1

b
−x) = ab(1

a
−x)( 1

b
−x) = ab(x− 1

a
)(x− 1

b
)

and since ab = −1 we get

1− x − x2 = (1− ax)(1− bx) = −(x − 1
a
)(x − 1

b
)
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Now 1− x − x2 = −x2 − x + 1 has roots given by the quadratic formula,
namely

1±
√
5

−2
=

−1±
√
5

2
.

So since

1− x − x
2 = −(x − 1

a
)(x − 1

b
)

whose roots are 1
a
and 1

b
then we can assume that

1

a
=

−1 +
√
5

2
and

1

b
=

−1−
√
5

2
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which means that

a =
2

−1 +
√
5

=
1 +

√
5

2

b =
2

−1−
√
5

=
1−

√
5

2
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So..

x

1− x − x2
=

x

(1− ax)(1− bx)

=
A

1− ax
+

B

1− bx

↓
x = A(1− bx) + B(1− ax)

which can be solved to yield A = 1√
5
, B = − 1√

5
so that

F (x) =

∞
∑

n=0

1√
5
a
n
x
n −

∞
∑

n=0

1√
5
b
n
x
n

which implies, ultimately that fn = an−bn√
5
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Now, instead of ’a’ and ’b’ we write ϕ = 1+
√
5

2 and ϕ̄ = 1−
√
5

2 where we
refer to ϕ is the ’golden mean’ or ’golden ratio’ which we’ll talk about
more in a moment.

So we’ve established that fn = ϕ
n−ϕ̄

n

√
5

for each n ≥ 0 and given that

ϕ = 1+
√
5

2 and ϕ̄ = 1−
√
5

2 it is perhaps not altogether obvious why

ϕn − ϕ̄n

√
5

is an integer, even though it must be as it does equal fn and each fn is
patently a whole number.
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The Golden Mean

Last time, we showed that for the Fibonacci Sequence {fn} defined by
f0 = 1, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2 that

fn =
ϕn − ϕ̄n

√
5

which is surprising given that ϕ = 1+
√
5

2 and ϕ̄ = 1−
√
5

2 are not whole
numbers.
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Nonetheless, this formula does reproduce the terms of fn, for example:

ϕ0 − ϕ̄0

√
5

=
1− 1√

5

= 0

ϕ1 − ϕ̄1

√
5

=

√
5√
5

= 1

ϕ2 − ϕ̄2

√
5

=

√
5√
5

= 1

ϕ3 − ϕ̄3

√
5

=
2
√
5√
5

= 2
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