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Differentiation of Series

Another useful tool for working with infinite series, especially those arising
from fractions A(x)

B(x) is that we can ’formally’ differentiate these series using
repeated applications of the basic power rule

d

dx
xn = nxn−1

which is well defined algebraically, even though we are not invoking any
limits in the process, but rather using the formal properties of the
differentiation operation.
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Theorem

If f (x) ∈ F [[x ]] where f (x) is a polynomial which is invertible, then if

1

f (x)
=

∞∑

n=0

cnx
n

then

d

dx

1

f (x)
=

d

dx

∞∑

n=0

cnx
n

=
d

dx
(c0 + c1x + c2x

2 + c3x
3 + . . . )

= c1 + 2c2x + 3c2x
2 + . . .

=

∞∑

n=1

ncnx
n−1
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That is, we can differentiate series in F [[x ]] and the ’function’ represented
by the derivative is given by the series obtained from differentiating the
terms one-by-one.

This should be somewhat familiar if you recall the development of series in
Calculus 2.

However, here we are still not assuming anything ’analytic’ in the usage of
this theorem, since it is actually a statement about algebra since the
functions being represented by series are ’algebraic’, i.e. polynomials or
rational functions.
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Example:

1

1− x
=

∞∑

n=0

xn = 1 + x + x2 + . . .

↓

d

dx

(
1

1− x

)

=

∞∑

n=1

nxn−1 = 1 + 2x + 3x2 + . . .

↓

1

(1− x)2
=

∞∑

n=0

(n + 1)xn
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To see that 1 + 2x + 3x2 + . . . really does represent 1
(1−x)2

simply compute

(1− x)2(1 + 2x + 3x2 + . . . )

(1− x)2(

∞∑

n=0

(n + 1)xn) = (1− 2x + x2)(

∞∑

n=0

(n + 1)xn)

=
∞∑

n=0

(n + 1)xn − 2x(
∞∑

n=0

(n + 1)xn) + x2(
∞∑

n=0

(n + 1)xn)

=

∞∑

n=0

(n + 1)xn − (

∞∑

n=0

(2n + 2)xn+1) + (

∞∑

n=0

(n + 1)xn+2)

= (1 + 2x + 3x2 + 4x3 + . . . )

− (2x + 4x2 + 6x3 + . . . )

+ (1x2 + 2x3 + 3x4 + . . . )

= 1
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Here is a nice example with a sequence {un} defined by the recurrence:
u0 = 0, un+1 = un + (n + 1).

U(x) = u0 + u1x + u2x
2 + u3x

3 + . . .

= u0 + (u0 + 1)x + (u1 + 2)x2 + (u2 + 3)x3 + . . .

= u0 + x(u0 + u1x + . . . ) + (x + 2x2 + 3x3 + . . . )

= u0 + x(u0 + u1x + . . . ) + x(1 + 2x + 3x2 + . . . )

= u0 + xU(x) + x

(
1

(1− x)2

)

= xU(x) + x

(
1

(1− x)2

)
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So we have that U(x)− xU(x) =
x

(1− x)2
which means U(x) =

x

(1− x)3
.

The question is now, what is the series which represents U(x)?
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Bear in mind that
d

dx

1

(1− x)2
=

2

(1− x)3

so

2

(1− x)3
=

d

dx

∞∑

n=0

(n + 1)xn

=
∞∑

n=1

n(n + 1)xn−1

=

∞∑

n=0

(n + 1)(n + 2)xn

↓ multiply by
x

2

x

(1− x)3
=

∞∑

n=0

(n + 1)(n + 2)

2
xn+1

= 0 +
1(2)

2
x +

2(3)

2
x2 +

3(4)

2
x3 + . . .

= u0 + u1x + u2x
2 + u3x

3 + . . .
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So, in the final analysis, the recurrence u0 = 0 and un+1 = un + (n + 1),
which implies

u0 = 0

u1 = 0 + 1 = 1

u2 = 1 + 2

u3 = 1 + 2 + 3

etc.

which results in the familiar formula for the ’Triangular Numbers’

un = 1 + 2 + · · ·+ n =
n(n+ 1)

2

.
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Homogeneous Linear Recurrences

An HLR is a sequence {un} where u0 = c0, u1 = c1, . . . , uk−1 = ck−1 for
constants c0, . . . , ck−1 and

un+k + (a1un+k−1 + · · ·+ akun) = 0

for n ≥ 0, namely that un+k is expressed as a linear combination of the k

previous terms in the sequence.
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For example, for the Fibonacci sequence f0 = 1, f1 = 1, (whence k = 2)
and fn+2 = fn+1 + fn, namely

fn+2 − 1fn+1 − 1fn = 0

namely a1 = −1 and a2 = −1.

The usage of the term ’homogeneous’ is due to the recurrence relation
being expressed as un+k + (a1un+k−1 + · · ·+ akun) = 0, i.e. the right
hand side being 0.
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As such, the example earlier u0 = 1, un = 3un−1 + 1 is not homogeneous
since un − 3un−1 = 1.

You may say, what if we subtract 1 to get un − 3un−1 − 1 = 0?

But the resulting equation on the left is not a linear combination of the
sequence terms as it was for Fibonacci.
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Inhomogeneous Recursion Relations

For example: u0 = 0, u1 = 0, un+2 = 3un+1 + 4un + (n + 3) for n ≥ 2.

Here we define:

U(x) = u0 + u1x + u2x
2 + u3x

3 + . . .

= u0 + u1x + (3u1 + 4u0 + 3)x2 + (3u2 + 4u1 + 4)x3 + . . .

= u0 + u1x + (3u1x
2 + 3u2x

3 + . . . ) + (4u0x
2 + 4u1x

3 + . . . ) + (3x2 + 4x3 + 5

↓ 3xU(x) = 3u0x + 3u1x
2 + . . .

↓ 4x2U(x) = 4u0x
2 + 4u1x

3 + . . .

= 3xU(x) + 4x2U(x) + (3x2 + 4x3 + . . . )

= 3xU(x) + 4x2U(x) +

[
1

(1− x)2
− (1 + 2x)

]
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So we have that

U(x)(1 − 3x − 4x2) =
1

(1− x)2
− (1 + 2x) =

3x2 − 2x3

(1− x)2

and so we solve for U(x) to get

U(x) =
x2(3− 2x)

(1− 4x)(1 + x)(1− x)2

=
A

1− 4x
+

B

1 + x
+

C

1− x
+

D

(1− x)2
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A

1− 4x
+

B

1 + x
+

C

1− x
+

D

(1− x)2

=
2

9

(
1

1− 4x

)

+
1

4

(
1

1 + x

)

−
11

36

(
1

1− 3x

)

−
1

6

(
1

(1− x)2

)
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To complete the analysis we use the following series representations:

1

1− 4x
=

∞∑

n=0

(4x)n =
∞∑

n=0

4nxn

1

1 + x
=

1

1− (−x)
=

∞∑

n=0

(−x)n =

∞∑

n=0

(−1)nxn

1

1− x
=

∞∑

n=0

xn

1

(1− x)2
=

∞∑

n=1

nxn−1 =

∞∑

n=0

(n + 1)xn
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This implies that

U(x) =

∞∑

n=0

[(
2

9

)

4n +

(
1

4

)

(−1)n −

(
11

36

)

1n −

(
1

6
(n + 1)

)]

︸ ︷︷ ︸

un

xn

which is not something one would ’guess’ or be easily able to determine
from looking at the first few terms.
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Here is a slightly different example, but still uses many of the same
techniques.

Recall the triangular numbers formula

1 + 2 + · · ·+ n =
n(n+ 1)

2

for each integer n ≥ 1.

This is usually proven by induction, but as we saw, this can be done with
generating functions.
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What if we want the analogous formula for squares, namely:

12 + 22 + · · ·+ n2 = f (n)

for some function f .
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To handle this case, we will use utilize the well known fact that
d

dx
xn = nxn−1, which we used earlier to derive the fact that

1

1− x
=

∞∑

n=0

xn

↓

d

dx

1

1− x
=

d

dx

∞∑

n=0

xn

↓

1

(1− x)2
=

∞∑

n=1

nxn−1

but we utilize the fact that the above method is true for finite versions of
the sum on the right.
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You may have seen this fact given in Calculus,

1 + x + · · · + xn−1 =
xn − 1

x − 1

provided x 6= 1. We can manipulate both sides of this equation.
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1 + x + · · ·+ xn−1 =
xn − 1

x − 1

↓

d

dx

(
1 + x + · · ·+ xn−1

)
=

d

dx

(
xn − 1

x − 1

)

↓

1 + 2x + 3x2 + · · ·+ (n − 1)xn−2 =
−xn−1n + 1 + (n− 1) xn

(x − 1)2

↓ multiply by x

x + 2x2 + 3x3 + · · ·+ (n − 1)xn−1 =
−xnn + x + (n − 1) xn+1

(x − 1)2
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x + 2x2 + 3x3 + · · ·+ (n − 1)xn−1 =
−xnn + x + (n − 1) xn+1

(x − 1)2

↓

d

dx

(
x + 2x2 + 3x3 + · · ·+ (n − 1)xn−1

)
=

d

dx

(
−xnn + x + (n − 1) xn+1

(x − 1)2

)

↓

1 + 4x + 9x2 + · · · + (n − 1)2xn−2 =
((n − 2) x − n) (x − 1) nxn−1 + (xn − 1) (x + 1)

(1− x)3

At this stage it looks very messy, but if we can ’let x = 1’ on both sides, in particular the left
we get

1 + 4 + 9 + · · ·+ (n − 1)2 = 11 + 22 + 32 + · · · + (n − 1)2

but letting x = 1 on the right yields the indeterminate form 0
0 .

So, even though we insisted that this theory does not involve calculus, we can make an
exception in this case since it will very readily give us our answer.
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Basically

1 + 4x + 9x2 + · · · + (n − 1)2xn−1 =
((n − 2) x − n) (x − 1) nxn−1 + (xn − 1) (x + 1)

(1− x)3

↓

lim
x→1

1 + 4x + 9x2 + · · · + (n − 1)2xn−1 = lim
x→1

((n − 2) x − n) (x − 1) nxn−1 + (xn − 1) (x + 1)

(1− x)3

↓ L’Hopitals Rule

12 + 22 + · · · + (n − 1)2 =
(n − 1)n(2n − 1)

6

which, implies

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

for each n ≥ 1.
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