MA294 Lecture

Timothy Kohl

Boston University

April 23, 2024

Partitions of a Positive Integer

For a positive integer n, a partition of n is a sum of positive integers that adds up to n.
$n=1$

$$
1=1
$$

(no other possibilities)
$n=2$

$$
\begin{aligned}
2 & =2 \\
& =1+1
\end{aligned}
$$

$n=3$

$$
\begin{aligned}
3 & =3 \\
& =2+1 \\
& =1+1+1
\end{aligned}
$$

Ok, not too difficult, but as n increases, the number of possibilities increases.

Consider $n=5$

$$
\begin{aligned}
5 & =5 \\
& =4+1 \\
& =3+2 \\
& =3+1+1 \\
& =2+2+1 \\
& =2+1+1+1 \\
& =1+1+1+1+1
\end{aligned}
$$

A way to understand these partitions, and to help see the 'symmetries' that exist amongst them is through what are known as Ferrers Diagrams.

We've enumerate partitions by following a certain convention.

Namely, we write partitions typically as $n=i_{1}+i_{2}+\cdots+i_{k}$ where $i_{1} \geq i_{2} \geq \cdots \geq i_{k}$, such as $5=2+2+1$.

We can represent this as a Ferrers Diagram which is a 'stack' of dots arranged in rows of non-increasing size.

$$
5=2+2+1 \quad 5=2+1+1+1 \quad 5=1+1+1+1+1
$$

What is rather nice about these diagrams is that they can be 'flipped' to yield different partitions.

So we say these partitions are 'conjugate', and similarly
$5=2+1+1+1$
$5=4+1$
are conjugate as well.

Indeed all partitions can grouped in 'pairs' of partitions which are conjugates of each other, even these two:

but some can be 'self conjugate', for example:

where the 'self conjugacy' is due to the symmetry of the diagram when flipped.

Applied to $n=5$ we have the following correspondences:

$$
\left(\begin{array}{l}
5=5 \\
=4+1 \\
=3+2 \\
=2+2+1 \\
=2+1+1+1 \\
=1+1+1+1+1
\end{array}\right.
$$

Applied to the $n=6$ we have these correspondences:

One may wonder if there are ever more than one self-conjugate partition of an integer.

Yes, consider $n=8$.

In general, the number of self-conjugate partitions is a non-decreasing function of n.

And, speaking of numbers, how many partitions are there of an arbitrary integer n ?

Definition

For $n \geq 0$ an integer, let $\mathcal{P}(n)$ be the number of partitions of n.
Consider:

- $\mathcal{P}(0)=1$ (i.e. $0=0$ only)
- $\mathcal{P}(1)=1$
- $\mathcal{P}(2)=2$
- $\mathcal{P}(3)=3$
- $\mathcal{P}(4)=5$
- $\mathcal{P}(5)=7$
- $\mathcal{P}(6)=11$

So the question is whether there is an obvious pattern, and also is $\mathcal{P}(n) \approx n$ as we see in these initial values?

We can give some indication of the answer to the second question by looking at $\mathcal{P}(n)$ for larger n.
$\mathcal{P}(10)=42$

$$
\begin{aligned}
& 10=10 \\
& 10=9+1 \\
& 10=8+2 \\
& 10=8+1+1 \\
& 10=7+3 \\
& 10=7+2+1 \\
& 10=7+1+1+1 \\
& 10=6+4 \\
& 10=6+3+1 \\
& 10=6+2+2 \\
& 10=6+2+1+1 \\
& 10=6+1+1+1+1 \\
& 10=5+5 \\
& 10=5+4+1 \\
& 10=5+3+2 \\
& 10=5+3+1+1 \\
& 10=5+2+2+1 \\
& 10=5+2+1+1+1 \\
& 10=5+1+1+1+1+1 \\
& 10=4+4+2 \\
& 10=4+4+1+1
\end{aligned}
$$

$$
\begin{aligned}
& 10=4+3+3 \\
& 10=4+3+2+1 \\
& 10=4+3+1+1+1 \\
& 10=4+2+2+2 \\
& 10=4+2+2+1+1 \\
& 10=4+2+1+1+1+1 \\
& 10=4+1+1+1+1+1+1 \\
& 10=3+3+3+1 \\
& 10=3+3+2+2 \\
& 10=3+3+2+1+1 \\
& 10=3+3+1+1+1+1 \\
& 10=3+2+2+2+1 \\
& 10=3+2+2+1+1+1 \\
& 10=3+2+1+1+1+1+1 \\
& 10=3+1+1+1+1+1+1+1 \\
& 10=2+2+2+2+2 \\
& 10=2+2+2+2+1+1 \\
& 10=2+2+2+1+1+1+1 \\
& 10=2+2+1+1+1+1+1+1 \\
& 10=2+1+1+1+1+1+1+1+1 \\
& 10=1+1+1+1+1+1+1+1+1+1
\end{aligned}
$$

- $\mathcal{P}(20)=627$
- $\mathcal{P}(30)=5604$
- $\mathcal{P}(40)=37338$
- $\mathcal{P}(50)=204226$
- $\mathcal{P}(60)=966467$
-
- $\mathcal{P}(100)=190,569,292$
- $\mathcal{P}(200)=3,972,999,029,388$

So you can see the value of $\mathcal{P}(n)$ grows quite dramatically.

Before we get back to the long term behavior of $\{\mathcal{P}(n)\}$ I wish to explore a bit more about partitions and their conjugates.

Notation: If λ is a partition of n then we sometimes write $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ where $n=\lambda_{1}+\cdots+\lambda_{k}$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ which is the same, non-increasing pattern as before.

We will also use the term 'part' synonymously with 'summand' when speaking of those terms which add up to n.

And for a partition λ, the conjugate partition is denoted λ^{*}, e.g. for $n=5$, if $\lambda=(2,2,1)$ then $\lambda^{*}=(3,2)$ as we saw from the Ferrer's diagram of the two:

Moreover, the operation $\lambda \mapsto \lambda^{*}$ is an 'involution' namely that repeated twice we get back the original partition, that is $\left(\lambda^{*}\right)^{*}=\lambda$.

We used the Ferrers diagram to determine λ^{*} from λ but it actually can be done without the diagram.

Observe that in $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ the largest part (summand) is λ_{1}, which, (visually) is the number of dots in the first row, which becomes the number of parts (i.e. the length) of λ^{*}.

Moreover, we also have that the first column in the Ferrers diagram for λ becomes the first row of λ^{*}.

But the length of the first column of the diagram for λ is the largest part that appears in λ^{*}.

i.e. If we conjugate $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \mapsto \lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{l}^{*}\right)$ then the largest part (summand) of λ^{*} is exactly k.

That is $\lambda_{1}^{*}=k$ and $\lambda_{1}=l$.

Going further, λ_{i}^{*} is the length of column i in the diagram of λ and there is a dot in each position in this column, for every row of length at least i.

So λ_{i}^{*} is the number of parts of size $\geq i$ in λ.
$\lambda=(6,3,2,2,1)$

So, for example if $\lambda=(6,3,2,2,1)$ (which has length 5) then $\lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}, \lambda_{4}^{*}, \lambda_{5}^{*}, \lambda_{6}^{*}\right)$ where now $\lambda_{1}^{*}=5$ (the length of λ).
$\lambda_{2}^{*}=4$ since there are four parts of λ that are ≥ 2 (i.e. $6,3,2,2$)

Similarly $\lambda_{3}^{*}=2$ (accounting for 6,3), and $\lambda_{4}^{*}=1$ (6 only), $\lambda_{5}^{*}=1$, $\lambda_{6}^{*}=1$ too, again accounting for the 6 .

That is $\lambda^{*}=(5,4,2,1,1,1)$, which we can confirm visually

