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Partitions of a Positive Integer

For a positive integer n, a partition of n is a sum of positive integers that adds
up to n.

n = 1

1 = 1

(no other possibilities)
n = 2

2 = 2

= 1 + 1

n = 3

3 = 3

= 2 + 1

= 1 + 1 + 1

Ok, not too difficult, but as n increases, the number of possibilities increases.
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Consider n = 5

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

A way to understand these partitions, and to help see the ’symmetries’
that exist amongst them is through what are known as Ferrers Diagrams.
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We’ve enumerate partitions by following a certain convention.

Namely, we write partitions typically as n = i1 + i2 + · · ·+ ik where
i1 ≥ i2 ≥ · · · ≥ ik , such as 5 = 2 + 2 + 1.

We can represent this as a Ferrers Diagram which is a ’stack’ of dots
arranged in rows of non-increasing size.
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5 = 2 + 2 + 1 5 = 2 + 1 + 1 + 1 5 = 1 + 1 + 1 + 1 + 1

What is rather nice about these diagrams is that they can be ’flipped’ to
yield different partitions.
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5 = 2 + 2 + 1 5 = 3 + 2

So we say these partitions are ’conjugate’, and similarly

5 = 2 + 1 + 1 + 1 5 = 4 + 1

are conjugate as well.
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Indeed all partitions can grouped in ’pairs’ of partitions which are
conjugates of each other, even these two:

5 = 5 5 = 1 + 1 + 1 + 1 + 1
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but some can be ’self conjugate’, for example:

5 = 3 + 1 + 1 5 = 3 + 1 + 1

where the ’self conjugacy’ is due to the symmetry of the diagram when
flipped.
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Applied to n = 5 we have the following correspondences:

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1
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Applied to the n = 6 we have these correspondences:

6 = 6

= 5 + 1

= 4 + 2

= 4 + 1 + 1

= 3 + 3

= 3 + 2 + 1

= 3 + 1 + 1 + 1

= 2 + 2 + 2

= 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1
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One may wonder if there are ever more than one self-conjugate partition of an
integer.

Yes, consider n = 8.

8 = 4 + 2 + 1 + 1 8 = 3 + 3 + 2

In general, the number of self-conjugate partitions is a non-decreasing function
of n.

And, speaking of numbers, how many partitions are there of an arbitrary
integer n?
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Definition

For n ≥ 0 an integer, let P(n) be the number of partitions of n.

Consider:

P(0) = 1(i.e. 0 = 0 only)

P(1) = 1

P(2) = 2

P(3) = 3

P(4) = 5

P(5) = 7

P(6) = 11

So the question is whether there is an obvious pattern, and also is
P(n) ≈ n as we see in these initial values?
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We can give some indication of the answer to the second question by looking
at P(n) for larger n.
P(10) = 42

10 = 10

10 = 9 + 1

10 = 8 + 2

10 = 8 + 1 + 1

10 = 7 + 3

10 = 7 + 2 + 1

10 = 7 + 1 + 1 + 1

10 = 6 + 4

10 = 6 + 3 + 1

10 = 6 + 2 + 2

10 = 6 + 2 + 1 + 1

10 = 6 + 1 + 1 + 1 + 1

10 = 5 + 5

10 = 5 + 4 + 1

10 = 5 + 3 + 2

10 = 5 + 3 + 1 + 1

10 = 5 + 2 + 2 + 1

10 = 5 + 2 + 1 + 1 + 1

10 = 5 + 1 + 1 + 1 + 1 + 1

10 = 4 + 4 + 2

10 = 4 + 4 + 1 + 1
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10 = 4 + 3 + 3

10 = 4 + 3 + 2 + 1

10 = 4 + 3 + 1 + 1 + 1

10 = 4 + 2 + 2 + 2

10 = 4 + 2 + 2 + 1 + 1

10 = 4 + 2 + 1 + 1 + 1 + 1

10 = 4 + 1 + 1 + 1 + 1 + 1 + 1

10 = 3 + 3 + 3 + 1

10 = 3 + 3 + 2 + 2

10 = 3 + 3 + 2 + 1 + 1

10 = 3 + 3 + 1 + 1 + 1 + 1

10 = 3 + 2 + 2 + 2 + 1

10 = 3 + 2 + 2 + 1 + 1 + 1

10 = 3 + 2 + 1 + 1 + 1 + 1 + 1

10 = 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1

10 = 2 + 2 + 2 + 2 + 2

10 = 2 + 2 + 2 + 2 + 1 + 1

10 = 2 + 2 + 2 + 1 + 1 + 1 + 1

10 = 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1

10 = 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

10 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
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P(20) = 627

P(30) = 5604

P(40) = 37338

P(50) = 204226

P(60) = 966467
...

P(100) = 190, 569, 292

P(200) = 3, 972, 999, 029, 388

So you can see the value of P(n) grows quite dramatically.
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Before we get back to the long term behavior of {P(n)} I wish to explore
a bit more about partitions and their conjugates.

Notation: If λ is a partition of n then we sometimes write
λ = (λ1, λ2, . . . , λk) where n = λ1 + · · · + λk and λ1 ≥ λ2 ≥ · · · ≥ λk

which is the same, non-increasing pattern as before.

We will also use the term ’part’ synonymously with ’summand’ when
speaking of those terms which add up to n.
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And for a partition λ, the conjugate partition is denoted λ∗, e.g. for
n = 5, if λ = (2, 2, 1) then λ∗ = (3, 2) as we saw from the Ferrer’s
diagram of the two:

λ = (2, 2, 1) λ∗ = (3, 2)

Moreover, the operation λ 7→ λ∗ is an ’involution’ namely that repeated
twice we get back the original partition, that is (λ∗)∗ = λ.
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λ = (2, 2, 1) λ∗ = (3, 2)

We used the Ferrers diagram to determine λ∗ from λ but it actually can
be done without the diagram.
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Observe that in λ = (λ1, . . . , λk) the largest part (summand) is λ1, which,
(visually) is the number of dots in the first row, which becomes the
number of parts (i.e. the length) of λ∗.

Moreover, we also have that the first column in the Ferrers diagram for λ
becomes the first row of λ∗.

But the length of the first column of the diagram for λ is the largest part
that appears in λ∗.
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λ = (2, 2, 1) λ∗ = (3, 2)

i.e. If we conjugate λ = (λ1, . . . , λk) 7→ λ∗ = (λ∗

1, λ
∗

2, . . . , λ
∗

l
) then the

largest part (summand) of λ∗ is exactly k .

That is λ∗

1 = k and λ1 = l .
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λ = (2, 2, 1) λ∗ = (3, 2)

Going further, λ∗

i
is the length of column i in the diagram of λ and there

is a dot in each position in this column, for every row of length at least i .

So λ∗

i
is the number of parts of size ≥ i in λ.
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λ = (6, 3, 2, 2, 1)

So, for example if λ = (6, 3, 2, 2, 1) (which has length 5) then
λ∗ = (λ∗

1, λ
∗

2, λ
∗

3, λ
∗

4, λ
∗

5, λ
∗

6) where now λ∗

1 = 5 (the length of λ).

λ∗

2 = 4 since there are four parts of λ that are ≥ 2 (i.e. 6, 3, 2, 2)

Similarly λ∗

3 = 2 (accounting for 6, 3), and λ∗

4 = 1 (6 only), λ∗

5 = 1,
λ∗

6 = 1 too, again accounting for the 6.
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That is λ∗ = (5, 4, 2, 1, 1, 1), which we can confirm visually

λ = (6, 3, 2, 2, 1) λ∗ = (5, 4, 2, 1, 1, 1)
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