MA294 Lecture

Timothy Kohl

Boston University

April 30, 2024

Going beyond finite lists of specific parts (summands), we consider what happens if we include all possible values for parts.

Theorem

The generating function for the sequence $\{\mathcal{P}(n)\}_{n=0}^{\infty}$ is

$$
\begin{aligned}
P(x) & =\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{-1} \\
& =\left(1-x^{1}\right)^{-1}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-1} \cdots
\end{aligned}
$$

in that $P(x)=\sum_{n=0}^{\infty} \mathcal{P}(n) x^{n}$.

The degree n coefficients in $\left(1-x^{1}\right)^{-1}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-1} \ldots$ correspond to those products $x^{i_{1}} x^{i_{2}} \cdots x^{i_{k}}$ where $i_{1}+i_{2} \cdots+i_{k}=n$ and since all powers $x^{i_{t}}$ appear in at least once in

$$
\left(1-x^{i}\right)^{-1}=\frac{1}{1-x^{i}}=1+x^{i}+x^{2 i}+\ldots
$$

then all possible partitions of n occur as powers of x in the 'infinite product' $\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{-1}$.

Theorem

The generating function for the sequence $\{\mathcal{P}(n)\}_{n=0}^{\infty}$ is

$$
\begin{aligned}
P(x) & =\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{-1} \\
& =\left(1-x^{1}\right)^{-1}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-1} \cdots
\end{aligned}
$$

in that $P(x)=\sum_{n=0}^{\infty} \mathcal{P}(n) x^{n}$.

To understand this theorem, we realize that $(1-x)^{-1}$ contributes 1 summand, $\left(1-x^{2}\right)^{-1}$ contributes 2 summands, etc. and so for each n, we have contributions from all $x^{\alpha i}$ corresponding to those partitions of n containing α instances of the summand ' i '.

However, we may consider more nuanced counting questions.

Consider the partitions of all integers less than some N by restricting to the product

$$
(1-x)^{-1}\left(1-x^{2}\right)^{-1} \cdots\left(1-x^{N}\right)^{-1}
$$

as no partition of N can contain summands larger than N.

For example, suppose $N=5$, then we can consider

$$
\left(1-x^{1}\right)^{-1}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-1}\left(1-x^{4}\right)^{-1}\left(1-x^{5}\right)^{-1}
$$

but, in fact, we only need those terms of degree below 5 .

$$
\begin{aligned}
& \left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)\left(1+x^{5}\right)= \\
& 1+x+2 x^{2}+3 x^{3}+5 x^{4}+7 x^{5}+\cdots+x^{21}
\end{aligned}
$$

and we read off the exact values
$\mathcal{P}(0)=1, \mathcal{P}(1)=1, \mathcal{P}(2)=2, \mathcal{P}(3)=3, \mathcal{P}(4)=5$, and $\mathcal{P}(5)=7$.

If one adds more terms, one obtains $\mathcal{P}(n)$ for still larger n.

Before going further, let's make note of a remarkable fact due to Hardy and Ramanujan about the magnitude of $\mathcal{P}(n)$.

What they showed was this

$$
\mathcal{P}(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}}
$$

as $n \rightarrow \infty$ which is what is termed an asymptotic formula in that it gets better as n increases which means that

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{P}(n)}{\left(\frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2 n}{3}}}\right)}=1
$$

And speaking of (Srinivasa) Ramanujan, he also discovered a number extraordinary 'modular' properties of $\mathcal{P}(n)$.

Theorem

The following are true:

$$
\begin{aligned}
\mathcal{P}(5 k+4) & \equiv 0(\bmod 5) \\
\mathcal{P}(7 k+5) & \equiv 0(\bmod 7) \\
\mathcal{P}(11 k+6) & \equiv 0(\bmod 11)
\end{aligned}
$$

For example,

- $\mathcal{P}(4)=\mathcal{P}(5 \cdot 0+4)=5$
- $\mathcal{P}(9)=\mathcal{P}(5 \cdot 1+4)=15$
- $\mathcal{P}(5)=\mathcal{P}(7 \cdot 0+5)=7$
- $\mathcal{P}(12)=\mathcal{P}(7 \cdot 1+5)=77$
but it makes one wonder if such congruences hold true for other moduli?

Many years later, this similar (but more complicated) congruence relation was discovered:

$$
\mathcal{P}\left(11^{3} \cdot 13 k+237\right) \equiv 0(\bmod 13)
$$

and there are some deeper results which are outside the scope of this class.

A good many of these ideas, in particular that $P(x)=\prod_{i=1}^{\infty} \frac{1}{1-x^{i}}$ is the generating function for $\mathcal{P}(n)$, originated in the work of Euler (Think $\left.e^{\pi i}+1=0\right)$ in the 1700 's.

Here is another amazing result of Euler's which (like the result about $P(x)$, and even the proof that $\left.e^{\pi i}+1=0\right)$ is based on series and infinite products.

Theorem

(Pentagonal Numbers Theorem)

$$
\prod_{i=1}^{\infty}\left(1-x^{i}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} x^{\frac{1}{2} n(3 n-1)}=1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+\ldots
$$

Here is the origin of the 'Pentagonal Numbers' sequence we just mentioned.

which has the terms $1,5,12,22,35,51, \ldots$, and in general $p_{n}=\frac{3 n^{2}-n}{2}$.

This has a fundamental connection to $\mathcal{P}(n)$.

First, we must establish the fact that

$$
\prod_{i=1}^{\infty}\left(1-x^{i}\right)=\sum_{n=0}^{\infty}\left(\mathcal{P}_{E}(n)-\mathcal{P}_{O}(n)\right) x^{n}
$$

where $\mathcal{P}_{E}(n)$ and $\mathcal{P}_{O}(n)$ are the ways of partitioning n into either a sum of even or odd number of distinct parts.

The other fact we claim (which we won't prove here) is that

Lemma

$$
\mathcal{P}_{E}(n)-\mathcal{P}_{O}(n)=(-1)^{k}
$$

if $n=\frac{1}{2} k(3 k+1)$ for some $k \in \mathbb{Z}$ and 0 otherwise.

So, using the Pentagonal Numbers Theorem, and the facts we just observed:

$$
\begin{aligned}
1 & =\frac{\prod_{i=1}^{\infty}\left(1-x^{i}\right)}{\prod_{i=1}^{\infty}\left(1-x^{i}\right)} \\
& =\left(1-x-x^{2}+x^{5}+x^{7}-\ldots\right)\left(\mathcal{P}(0)+\mathcal{P}(1) x+\mathcal{P}(2) x^{2}+\ldots\right)
\end{aligned}
$$

which implies that

$$
0=\mathcal{P}(n)-\mathcal{P}(n-1)-\mathcal{P}(n-2)+\mathcal{P}(n-5)+\mathcal{P}(n-7)-\ldots
$$

which can be re-arranged to get a recurrence relation for $\mathcal{P}(n)$, namely

$$
\mathcal{P}(n)=\mathcal{P}(n-1)+\mathcal{P}(n-2)-\mathcal{P}(n-5)-\mathcal{P}(n-7)+\mathcal{P}(n-12)+\ldots
$$

which actually is not an infinite sum, since $n \geq 0$, so $n-?$ is eventually <0 so $\mathcal{P}(n-?)$ is 0 .

For example:

- $\mathcal{P}(6)=\mathcal{P}(5)+\mathcal{P}(4)-\mathcal{P}(1)=7+5-1=11$
- $\mathcal{P}(7)=\mathcal{P}(6)+\mathcal{P}(5)-\mathcal{P}(2)-\mathcal{P}(0)=11+7-2-1=15$
- $\mathcal{P}(8)=\mathcal{P}(7)+\mathcal{P}(6)-\mathcal{P}(3)-\mathcal{P}(1)=15+11-3-1=22$
- $\mathcal{P}(9)=\mathcal{P}(8)+\mathcal{P}(7)-\mathcal{P}(4)-\mathcal{P}(2)=22+15-5-2=30$
- $\mathcal{P}(10)=\mathcal{P}(9)+\mathcal{P}(8)-\mathcal{P}(5)-\mathcal{P}(3)=30+22-7-3=42$

