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Going beyond finite lists of specific parts (summands), we consider what
happens if we include all possible values for parts.

Theorem

The generating function for the sequence {P(n)}∞
n=0 is

P(x) =

∞
∏

i=1

(1− x i )−1

= (1− x1)−1(1− x2)−1(1− x3)−1 · · ·

in that P(x) =
∑∞

n=0 P(n)xn.
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The degree n coefficients in (1− x1)−1(1− x2)−1(1− x3)−1 · · ·
correspond to those products x i1x i2 · · · x ik where i1 + i2 · · ·+ ik = n and
since all powers x it appear in at least once in

(1− x i )−1 =
1

1− x i
= 1 + x i + x2i + . . .

then all possible partitions of n occur as powers of x in the ’infinite
product’

∏∞
i=1(1− x i)−1.
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To understand this theorem, we realize that (1− x)−1 contributes 1
summand, (1− x2)−1 contributes 2 summands, etc. and so for each n, we
have contributions from all xαi corresponding to those partitions of n
containing α instances of the summand ’i ’.

However, we may consider more nuanced counting questions.

Consider the partitions of all integers less than some N by restricting to
the product

(1− x)−1(1− x2)−1 · · · (1− xN)−1

as no partition of N can contain summands larger than N.
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For example, suppose N = 5, then we can consider

(1− x1)−1(1 − x2)−1(1− x3)−1(1− x4)−1(1− x5)−1

but, in fact, we only need those terms of degree below 5.

(1 + x + x2 + x3 + x4 + x5)(1 + x2 + x4)(1 + x3)(1 + x4)(1 + x5) =

1 + x + 2x2 + 3x3 + 5x4 + 7x5 + · · ·+ x21

and we read off the exact values

P(0) = 1,P(1) = 1,P(2) = 2,P(3) = 3,P(4) = 5, and P(5) = 7.

If one adds more terms, one obtains P(n) for still larger n.
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Before going further, let’s make note of a remarkable fact due to Hardy
and Ramanujan about the magnitude of P(n).

What they showed was this

P(n) ∼ 1

4n
√
3
e
π

√

2n
3

as n → ∞ which is what is termed an asymptotic formula in that it gets
better as n increases which means that

lim
n→∞

P(n)
(

1
4n

√
3
e
π

√

2n
3

) = 1

Timothy Kohl (Boston University) MA294 Lecture April 30, 2024 7 / 14



And speaking of (Srinivasa) Ramanujan, he also discovered a number
extraordinary ’modular’ properties of P(n).

Theorem

The following are true:

P(5k + 4) ≡ 0 (mod 5)

P(7k + 5) ≡ 0 (mod 7)

P(11k + 6) ≡ 0 (mod 11)

For example,

P(4) = P(5 · 0 + 4) = 5

P(9) = P(5 · 1 + 4) = 15

P(5) = P(7 · 0 + 5) = 7

P(12) = P(7 · 1 + 5) = 77

but it makes one wonder if such congruences hold true for other moduli?
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Many years later, this similar (but more complicated) congruence relation
was discovered:

P(113 · 13k + 237) ≡ 0 (mod 13)

and there are some deeper results which are outside the scope of this class.
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A good many of these ideas, in particular that P(x) =
∏∞

i=1
1

1−x i
is the

generating function for P(n), originated in the work of Euler (Think
eπi + 1 = 0) in the 1700’s.

Here is another amazing result of Euler’s which (like the result about
P(x), and even the proof that eπi + 1 = 0) is based on series and infinite
products.

Theorem

(Pentagonal Numbers Theorem)

∞
∏

i=1

(1−x i ) =

∞
∑

n=−∞

(−1)nx
1
2
n(3n−1) = 1−x−x2+x5+x7−x12−x15+ . . .
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Here is the origin of the ’Pentagonal Numbers’ sequence we just
mentioned.

which has the terms 1, 5, 12, 22, 35, 51, . . . , and in general pn = 3n2−n

2 .
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This has a fundamental connection to P(n).

First, we must establish the fact that

∞
∏

i=1

(1− x i ) =
∞
∑

n=0

(PE (n)− PO(n))x
n

where PE (n) and PO(n) are the ways of partitioning n into either a sum of
even or odd number of distinct parts.

The other fact we claim (which we won’t prove here) is that

Lemma

PE (n)− PO(n) = (−1)k

if n = 1
2k(3k + 1) for some k ∈ Z and 0 otherwise.
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So, using the Pentagonal Numbers Theorem, and the facts we just
observed:

1 =

∏∞
i=1(1− x i)

∏∞
i=1(1− x i)

= (1− x − x2 + x5 + x7 − . . . )(P(0) + P(1)x + P(2)x2 + . . . )

which implies that

0 = P(n)− P(n − 1) −P(n − 2) + P(n − 5) + P(n − 7)− . . .

which can be re-arranged to get a recurrence relation for P(n), namely

P(n) = P(n − 1) + P(n − 2)− P(n − 5)− P(n − 7) + P(n − 12) + . . .

which actually is not an infinite sum, since n ≥ 0, so n − ? is eventually

< 0 so P(n − ? ) is 0.
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For example:

P(6) = P(5) + P(4) − P(1) = 7 + 5− 1 = 11

P(7) = P(6) + P(5) − P(2) − P(0) = 11 + 7− 2− 1 = 15

P(8) = P(7) + P(6) − P(3) − P(1) = 15 + 11− 3− 1 = 22

P(9) = P(8) + P(7) − P(4) − P(2) = 22 + 15− 5− 2 = 30

P(10) = P(9) + P(8) − P(5) − P(3) = 30 + 22− 7− 3 = 42
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