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Modular Arithmetic

We recall the definition of ’equivalence’.

Definition

An equivalence relation ∼ on a set S is an association between pairs of
elements of S that satisfies the following properties:

a ∼ a for all a ∈ S (reflexivity)

a ∼ b implies b ∼ a (symmetry)

a ∼ b and b ∼ c implies a ∼ c (transitivity)

The word ’association’ may seem a bit nebulous so here is a more formal
definition.
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An equivalence relation ∼ on a set S is a subset R ⊆ S × S such that

(a, a) ∈ R for all a ∈ S (reflexivity)

(a, b) ∈ R implies (b, a) ∈ R (symmetry)

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R (transitivity)

and sometimes one writes aRb instead of a ∼ b.

An equivalence relation gives rise to a partition of the set.
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Definition

Given an equivalence relation ∼ on a set S and a ∈ S , the
equivalence class of a is the set

[a] = {b ∈ S |a ∼ b}

i.e. the set of all those elements equivalent to a.

Note: [a] ⊆ S and that a ∈ [a] of course.
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FACTS:

Proposition

If a1 ∼ a2 then [a1] = [a2] and vice-versa.

Proof.

Well, if a1 ∼ a2 then if b ∼ a1 then, by transitivity b ∼ a2 so [a1] ⊆ [a2].

Since a1 ∼ a2 implies a2 ∼ a1 then if b ∼ a2 (i.e. b ∈ [a2]) then b ∼ a1
(again by transitivity).

So b ∈ [a1] and therefore [a2] ⊆ [a1] so [a1] = [a2].

If [a1] = [a2] then, since a1 ∈ [a1] we have that a1 ∈ [a2] so a1 ∼ a2.
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Proposition

For a1, a2 ∈ S, either [a1] = [a2] or [a1] ∩ [a2] = ∅.

Proof.

Suppose [a1] ∩ [a2] 6= ∅ then if x ∈ [a1] ∩ [a2] we have x ∼ a1 and x ∼ a2.

Thus a1 ∼ x and x ∼ a2 so, by transitivity, a1 ∼ a2 which, by the previous
fact, implies that [a1] = [a2].
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Proposition

If ∼ is an equivalence relation defined on a set S then S is the union of
the distinct equivalence classes with respect to ∼.

Proof.

The basic point is that if a ∈ S then a ∈ [a] so every element of S belongs
to an equivalence class.

And the only other observation to make is that, by the above facts, two
distinct elements of S give rise to equivalence classes that are either
identical, or disjoint, as sets.

Note, if a ∼ b for all a, b ∈ S then there is only one equivalence class,
namely [a] = S for any a ∈ S .

On the other hand, one can define a ∼ b only if a = b, in which case each
a ∈ S determines its own equivalence class, namely [a] = {a}, the set
consisting of a by itself.
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Modular Arithmetic

The principle example of an equivalence relation is that which gives rise to
what is known as modular arithmetic.

Definition

Let S = Z (the integers) and pick m > 1 a fixed integer (called the
modulus) and define an equivalence relation ≡ on Z as follows:

a ≡ b (mod m)

if m divides a− b, written m|a − b.

Equivalently, a − b = km for some integer k . (k can be positive or
negative!)

We also use the terminology ’a is congruent to b mod m’.

Timothy Kohl (Boston University) MA294 Lecture June 30,2025 8 / 26



Proposition

a ≡ b (mod m) is an equivalence relation on Z

Proof.

If a ∈ Z then a ≡ a (mod m) since a− a = 0 = 0 ·m. (i.e. k = 0)

If a ≡ b (mod m) then a− b = km, so the question is whether b ≡ a, but
this is indeed the case since b − a = −(a− b) = −km = (−k)m so b − a
is a multiple of m.

If a ≡ b (mod m) and b ≡ c (mod m) then a− b = k1m for some k1 and
b − c = k2m for some k2 and so
a − c = (a − b) + (b − c) = k1m + k2m = (k1 + k2)m and so
a ≡ c (mod m).
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Examples:

5 ≡ 2 (mod 3)

−1 ≡ 5 (mod 6)

2 ≡ 0 (mod 2)

−2 ≡ −5 (mod 3)

Note, we don’t usually let m = 1 as then a ≡ b (mod 1) would hold for all
integers a, b which wouldn’t be terribly interesting.
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The equivalence classes of Z with respect to congruence mod m can be
understood by means of the Division Algorithm.

Proposition

(The Division Algorithm) Given an integer a and divisor m, there exists
unique integers q, r such that

a = qm + r

where 0 ≤ r < m. (q=quotient, r=remainder)

Example: a = 23, m = 5 yields 23 = 4 · 5 + 3 and observe, as a
consequence, that 23 ≡ 3 (mod 5) which is no accident since a = qm + r
implies a ≡ r (mod m).
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Back to m = 3, consider the equivalence classes under ≡ mod 3.

[0]={. . . ,-9,-6,-3,0,3,6,9,. . . }

[1]={. . . ,-8,-5,-2,1,4,7,10,. . . }

[2]={. . . ,-7,-4,-1,2,5,8,11,. . . }

The reason for this is that if m = 3, given a ∈ Z one has

a = 3 · q + r

where 0 ≤ r < 3, i.e. r = 0, 1, 2.

That is, dividing a number by 3 leaves a particular (unique) remainder.
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The key point to observe is that, for a ∈ Z, and a fixed modulus m > 1
then a ≡ r (mod m) for exactly one r ∈ {0, 1, . . . ,m − 1}, i.e. a ∈ [r ]
uniquely.

Example: m = 2

a ≡ 0 (mod 2) only if 2|a, i.e. a is even

a ≡ 1 (mod 2) only if a = 2k + 1, i.e. a is odd

So Z = [0] ∪ [1] which is the natural division of integers into even versus
odd numbers.
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Note of course that for a given m one may have [a1] = [a2] for distinct
a1,a2.
i.e. Under ≡ mod 2 for example

[0] = [2] = [−2] = [4] = [−4] = . . . etc.

[1] = [3] = [−1] = [5] = [−3] = . . . etc.

But, again, given m > 1, a given a ∈ Z lies in exactly one [r ] for
0 ≤ r ≤ m − 1.

For example, for m = 10, one has a = dndn−1 · · · d1d0 (where the di are
the digits of a) namely

a = dn · 10
n + dn−1 · 10

n−1 + · · ·+ d1 · 10 + d0

yields the fact that a ≡ d0 (mod 10).
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For a given modulus m we can utilize the properties of congruence, to
define an ’arithmetic’ of congruences, based on the following properties of
≡.

Theorem

Given a fixed modulus m > 1, if a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m)
then
(i) a1 + b1 ≡ a2 + b2 (mod m)
(ii) a1b1 ≡ a2b2 (mod m)
namely that addition and multiplication are ’compatible’ with ≡.
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Proof.

If a1 − a2 = km and b1 − b2 = lm then

(a1 − a2) + (b1 − b2) = (k + l)m

↓

(a1 + b1)− (a2 + b2) = (k + l)m

↓

a1 + b1 ≡ a2 + b2 (mod m)

Similarly, a1b1 = (a2 + km)(b2 + lm) = a2b2 + a2lm + b2km + kmlm
implies that a1b1 ≡ a2b2.
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Another consequence of this is the following.

Proposition

If a ≡ b (mod m) then
an ≡ bn (mod m)

for any n ≥ 1.

Proof.

This is basically an application of the previous theorem, in particular
a ≡ b (mod m) and a ≡ b (mod m) (multiplied on both sides) yields
a · a ≡ b · b (mod m), namely a2 ≡ b2 (mod m) and we can repeat this as
often as we like for larger exponents.
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Here is a neat application of this fact.
Prove that the last digit of 230 is 4.

The basic bit of information we need is that digit ’d ′ ∈ {0, . . . , 9} such
that 230 ≡ d (mod 10).

We note that 22 = 4 so 22 ≡ 4 (mod 10) which implies that
(22)2 ≡ 42 (mod 10), and since 42 = 16, and 16 ≡ 6 (mod 10) then
24 ≡ 6 (mod 10) and so 25 ≡ 12 (mod 10) where, of course
12 ≡ 2 (mod 10), and so

25 ≡ 2 (mod 10)

which implies (25)6 ≡ 26 (mod 10), that is 230 ≡ 26 (mod 10) and since
26 = 64 then 26 ≡ 4 (mod 10) and therefore 230 ≡ 4 (mod 10).

That is, the last digit is 4, and indeed 230 = 1, 073, 741, 824.
Exercise: Repeat this for the number 22023.
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Zm the integers mod m - “Z mod m”

Recall that for a given modulus m > 1 that any integer a is congruent to
exactly one r ∈ {0, . . . ,m − 1} because, by the division algorithm

a = q ·m + r

for unique q, r , where r ∈ {0, 1, . . . ,m − 1}.

With this and the arithmetic properties of ≡ we just proved, one can define
a system of numbers that is based on the integers Z but is finite in size.

Timothy Kohl (Boston University) MA294 Lecture June 30,2025 19 / 26



Definition

The set of integers mod m denoted Zm is the set of distinct equivalence
classes

{[0], [1], . . . , [m − 1]}

with respect to the equivalence relation of congruence mod m.

For example Z3 = {[0], [1], [2]} since Z = [0] ∪ [1] ∪ [2].

Bear in mind that we are treating these infinite sets [a] as though they are
individual entities, which they are since each equivalence class is different
than another,but we can treat Zm as a finite set since there are only
finitely many equivalence classes in Zm.

Later on we will take this even further by dropping the ’[]’ around the [r ].
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The facts we proved earlier show how the congruence relation is
’compatible’ with addition and multiplication.

With this in mind we define the following addition and multiplication
operations on the set Zm.

Definition

If [x ], [y ] ∈ Zm then [x ] + [y ] = [x + y ] and [x ] · [y ] = [xy ].

The key fact(s) to be verified is that this operation is ’closed’ namely that
[x ] + [y ] ∈ Zm and [x ] · [y ] ∈ Zm.

In lieu of a formal proof, let us consider some examples which illustrate
this very clearly.
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Example: Z5 = {[0], [1], [2], [3], [4]}.

[2] + [4] = [2 + 4] = [6] = [1] since 6 ≡ 1 (mod 5)

[4] + [1] = [4 + 1] = [5] = [0]

[2] + [2] = [2 + 2] = [4]

[2] + [0] = [2 + 0] = [2]

[2] · [4] = [2 · 4] = [8] = [3] since 8 ≡ 3 (mod 5)

[3] · [1] = [3 · 1] = [3]

[2] · [3] = [2 · 3] = [6] = [1]
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For simplicity, it’s easier to write Zm = {0, 1, . . . ,m − 1} and compute
a + b and a · b mod m by computing the appropriate remainders ’mod m’.

Ex: Z6 = {0, 1, 2, 3, 4, 5}

2 + 3 = 5

4 + 3 = 1

5 · 2 = 4

3 · 3 = 3 (Yes, this can happen.)
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Theorem

In Zm the operations + and · follow the following rules.
Let a, b, c ∈ Zm

(1) a + b = b + a [Commutativity]

(2) a · b = b · a [Commutativity]

(3) (a + b) + c = a+ (b + c) [Associativity]

(4) (a · b) · c = a · (b · c) [Associativity]

(5) a + 0 = a [Additive Identity]

(6) a · 1 = a [Multiplicative Identity]

(7) a(b + c) = ab + ac [Distributive Law]

(8) For each a ∈ Zm, there exists b ∈ Zm such that a+ b = 0.
[Additive Inverses]
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Proof.

(Sketch) (5),(6) If [a] ∈ Zm then [a] + [0] = [a + 0] = [a], and similarly
[a] · [1] = [a · 1] = [a].

(8) If a ∈ Zm then if we let b = m − a then b ∈ Zm and obviously
[a] + [b] = [a] + [m − a] = [a +m − a] = [m] = [0] in Zm.

So, for we may define −a to be m− a and observe that a+ (−a) = 0.
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As to the associativity of addition, (a + b) + c = a+ (b + c) we invoke an
image which really conveys why the parentheses don’t matter.

0

1

2
3

4

5

6

7

8
9

10

11

Here, if we represent a number in Z12 as clockwise rotation, and the sum
of two numbers as the composition of two rotations then it’s clear why, for
example (3 + 2) + 4 = 3 + (2 + 4) = 3 + 2 + 4 = 9.
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