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Recall that if a ∈ Zm there exist b ∈ Zm such that a+ b = 0, i.e. b = −a.

For the multiplication operation, the analogue would be:

For each a ∈ Zm there exists b ∈ Zm such that a · b = 1

The problem is that this is not always the case.

For example, in Z6, if a = 2 then b ∈ Z6 would have to have the property
that 2b ≡ 1 (mod 6), but observe that for Z6 we have

2 · 0 = 0

2 · 1 = 2

2 · 2 = 4

2 · 3 = 0

2 · 4 = 2

2 · 5 = 4

So 2b = 1 is impossible.
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However, depending on the modulus m and a ∈ Zm one does have such
’multiplicative inverses’.

Example: In Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} let a = 2 then one may verify
that b = 5 is such that ab = 1, i.e. 2 · 5 = 10 = 1 in Z9, i.e. We may
write 2−1 = 5 in Z9.

Definition

An element r ∈ Zm is invertible (or a unit mod m) if there is some x ∈ Zm

such that rx = 1 in Zm.
In that case, x is called the multiplicative inverse of r and we write
r−1 = x .
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Example: Again in Z9, 4
−1 = 7 since 4 · 7 = 28 ≡ 1 (mod 9).

Note, in contrast, that 6−1 does not exist in Z9.Why?

Theorem

The only r ∈ Zm that have inverses are those for which gcd(r ,m) = 1,
that is ’r is co-prime to m’.

Recall that gcd(r ,m) means ’greatest common divisor of r and m’.
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Proof.

Suppose rx = 1 in Zm then we have

rx − 1 = qm

for some q.

Well then rx − qm = 1 so if d |r and d |m (i.e. d divides r and m) then
r = da for some a, and m = db for some b.

But then rx − qm = dax − qdb = d(ax − qb) but rx − qm = 1 do that d |1!

So the only conclusion is that d = 1, i.e. the only common divisor of r and
m is 1. For the converse we use the following FACT known as Bezout’s
Identity which is that, if gcd(r ,m) = 1 then there exists a, b such that
ar + bm = 1.

As such, ar − 1 = (−b)m which means ar ≡ 1 (mod m) i.e. r−1 = a, that
is, r is invertible.
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The invertible elements of Zm gives rise to this.

Definition

For m > 1 the units mod m is

U(m) = {r ∈ Zm |gcd(r ,m) = 1}

which is precisely the set of invertible elements of Zm.

Note, 0 6∈ U(m) for any m and the size of U(m) (as a set) is what is
known as

φ(m) = Euler’s Function, or Totient

and it is interesting to consider the value of φ(m).
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Example:

Z2 = {0, 1} → U(2) = {1} → φ(2) = 1

Z3 = {0, 1, 2} → U(3) = {1, 2} → φ(3) = 2

Z4 = {0, 1, 2, 3} → U(4) = {1, 3} → φ(4) = 2

Z5 = {0, 1, 2, 3, 4} → U(5) = {1, 2, 3, 4} → φ(5) = 4

Z6 = {0, 1, 2, 3, 4, 5} → U(6) = {1, 5} → φ(6) = 2

Z7 = {0, 1, 2, 3, 4, 5, 6} → U(7) = {1, 2, 3, 4, 5, 6} → φ(7) = 6

Z8 = {0, 1, 2, 3, 4, 5, 6, 7} → U(8) = {1, 3, 5, 7} → φ(8) = 4

Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8} → U(9) = {1, 2, 4, 5, 7, 8} → φ(9) = 6
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One observation we can make about the φ function is that if m is prime
then φ(m) = m − 1.

The reason for this is that if m is prime then any r < m is never a divisor
since m is prime.

But before developing further properties of φ we need some to make some
observations about U(m).

If r , s ∈ U(m) then rs ∈ U(m).(Why? Well gcd(r ,m) = 1 and
gcd(s,m) = 1 implies gcd(rs,m) = 1.)

1 ∈ U(m) for all m (obviously, since 1 · 1 = 1 so 1−1 = 1)

If r ∈ U(m) then r−1 ∈ U(m).[Exercise]

These properties, as we’ll discuss later on, make U(m) into what we know
as a group.
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One important property of φ is this.

Proposition

If gcd(r , s) = 1 then φ(rs) = φ(r)φ(s).

Proof.

(Sketch)The basic idea is to consider the function ρ : U(rs) → U(r)×U(s)
defined by ρ(x) = (x∗, x∗∗) where x∗ is the remainder when x is divided by
r and x∗∗ is the remainder when x is divided by s.

As gcd(r , s) = 1 then one can show that this map is 1-1 and onto, so that

|U(rs)| = |U(r)× U(s)| = |U(r)| · |U(s)|

namely that φ(rs) = φ(r)φ(s).

We should note that this not necessarily true if r and s are not relatively
prime.
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We have another very important property of the φ function, in particular
to its application to modern cryptography.

Theorem

If a ∈ U(m) then aφ(m) ≡ 1 (mod m). (Euler - 1763)
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Proof.

(Sketch) If U(m) = {a1, a2, . . . , aφ(m)} where, without loss of generality
a1 = 1 then for a ∈ U(m) consider

{aa1, aa2, . . . , aaφ(m)}

and observe that, since a ∈ U(m) then aai = aaj implies a−1aai = a−1aaj ,
that is (a−1a)ai = (a−1a)aj and since a−1a = 1 then this implies that
ai = aj . As such, {aa1, aa2, . . . , aaφ(m)} is a rearrangement (or
permutation) of {a1, a2, . . . , aφ(m)} and so

aa1aa2 . . . aaφ(m) = a1a2 · · · aφ(m)

namely aφ(m)b = b where b = (a1a2 · · · aφ(m)) which means

aφ(m)bb−1 = bb−1

where, of course bb−1 = 1 so aφ(m) = 1.
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A simpler version of this result is known as Fermat’s (Little) Theorem,
namely for m = p a prime and gcd(a, p) = 1 then ap−1 ≡ 1 (mod p) since
φ(p) = p − 1.

As mentioned earlier, Euler’s theorem (although a 200+ year old theorem)
is at the heart of the RSA (public key) encryption system that is integral
to modern electronic commerce and general security online.
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RSA Encryption

For a modulus m > 1 we showed for a ∈ U(m) that aφ(m) ≡ 1 (mod m).
A simple consequence of this is obtained if we multiply both sides by a,
namely that

aφ(m)+1 ≡ a (mod m)

and, in fact, this theorem is true even if a ∈ Zm and not just in U(m),
which is particularly useful in its application to cryptography.

One of the other preparatory points to note/recall is that φ(rs) = φ(r)φ(s)
if gcd(r , s) = 1, and in particular, if p and q are distinct primes, then
certainly gcd(p, q) = 1 and so φ(pq) = φ(p)φ(q) = (p − 1)(q − 1).
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The other operational fact, which is also at the heart of the security of the
RSA algorithm we’ll present, is that while it’s easy to multiply two large
numbers, it is computationally quite difficult to take a large number and
find its constituent factors.
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So, in particular, if p and q are ’large’ primes then m = pq is an even
larger number, and if one were given such a large number without knowing
’p’ and ’q’ then it would be quite difficult to factor m to find p and q.

Indeed, it is the relatively difficulty of factorization, as we’ll see, which is
what makes the RSA algorithm secure.
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And this also touches on the subject of ’quantum computers’ (outside the
scope of this course) which are basically computer systems for which
factorization is feasible in a ’reasonable’ amount of time, as compared with
the ’ordinary’ computers of today.

The one saving factor though, is that these quantum computers are
extremely difficult to build and work with, and it is generally accepted that
they haven’t been used for this purpose...yet!
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RSA Encryption

Let m = pq where p,q are ’big’ primes. (Keep p,q secret.)

Choose k such that gcd(k , φ(m)) = 1.

Find ’j ’ such that kj ≡ 1 (mod φ(m)), i.e. kj = tφ(m) + 1 (keep j
secret!)

Publish k and m. (This is the ’public’ part of public-key encryption.)

If a sender has a message, representable as a number a, where
presumably a < m then they compute ak mod m which is the
encrypted message they transmit.

The recepient then takes ak and computes (ak)j .

The end result is that

akj = atφ(m)+1 = (aφ(m))ta

≡ 1 · a (mod m)

≡ a (mod m)

So the recepient now has the message the sender wanted to transmit, the
number a.
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For a bit of history, the earliest versions used numbers m = pq of around
100 digits which is about 330 binary digits.

[Indeed sometimes these numbers are given in units of how long they are
in binary digits.]

And there was a challenge early on posed by the developers (R.S.A.) to
see who could factor some large numbers, and as time passed, and
techniques and computing power increased, the bit length had to be
increased to continue the challenge.

There are many resources online describing this, which one may readily
find.
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Latin Squares

Consider Z4 = {0, 1, 2, 3} and all the possible i + j for i , j ∈ Z4.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

where we emphasize how the table entries in the ’inner’ 4× 4 square are
filled in, based on adding the entries in the row and side column, e.g.
1 + 2 = 3.
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If we remove the top row, and left column we get the table:

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

and we observe the most important feature, namely that each row and
each column contains exactly one element from {0, 1, 2, 3} with no repeats.

What does this remind you of?

Definition

A latin square of order n is an n × n array in which each one of n symbols
occurs once in each row and once in each column.
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A more interesting example, for n = 6.

A B C D E F

B A E F C D

C F A E D B

D E F A B C

E D B C F A

F C D B A E

For a latin square L one may define L(i , j) to mean the entry at the i -th
row and j-th column.

So for above we have L(2, 3) = E , L(4, 6) = C and we can fram the latin
square condition in terms of the L(i , j).

Namely L is a latin square iff L(i , j) = L(i , k) only if j = k and
L(i , j) = L(k , j) only if i = k .
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Going back to the example with Z4 earlier, we have the following general
statement.

Theorem

For each m > 1 the m ×m array defined by L(i , j) = i + j for i , j ∈ Zm is
a latin square.

Proof.

If L(i , j) = L(i , k) then i + j = i + k , so can we conclude j = k in Zm?
Well, in Zm, every element as an additive inverse, so in particular

i + j = i + k

(−i) + i + j = (−i) + i + k

0 + j = 0 + k

j = k

and similarly L(i , j) = L(k , j) implies i = k .
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So what this shows is that for every m there is an m ×m latin square.

However, there are other examples as our 6× 6 example earlier
demonstrates, but even for 4× 4 we can find another (actually natural)
example.

A B C D

B A D C

C D A B

D C B A

as compared with the Z4 example (expressed with letters instead of
numbers)

A B C D

B C D A

C D A B

D A B C
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Before going further we should point out that latin squares have a number
of different applications.

One of these is in experimental design.

Suppose you have four test subjects, each of which is questioned
separately by four interviewers over four rounds of questioning, and you
want to make sure every interviewer interviews one and only one test
subject, but that every interviewer interviews every subject.

If the four interviewers are {1, 2, 3, 4} and the subjects are A,B ,C ,D and
the ’rounds’ R1,R2,R3,R4 then a latin square can be used to distribute
the subjects between the interviewers in each round.
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1 2 3 4

R1 A B C D

R2 B C D A

R3 C D A B

R4 D A B C

This is a fairly obvious plan since the ’cyclic’ rotation of subjects
A,B ,C ,D, amongst the interviewers obviously guarntees that the
conditions of the experiment are satisfied.

An alternate choice is the other one we saw above.

1 2 3 4

R1 A B C D

R2 B A D C

R3 C D A B

R4 D C B A
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A natural question is how many latin squares are there of a given size
n × n?

The first observation one can make which helps streamline the discussion
is that for any latin square in the set S = {x1, . . . , xn}, one may assume
that the first row and the first column are in the same order. i.e.

x1 x2 . . . xn

x2
. . .

...

xn

and such latin squares are called reduced.
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The number of (reduced) latin squares for small n can be determined:
n = 1 → 1

n = 2 → 1 (If the first row and column are given, there is only one way to
fill in the remaing cell!)

n = 3 → 1
A B C

B ? ?

C ? ?

n = 4 → 2 (the ones we’ve seen already, and no others)
n = 5 → 56 (This is not a typo!)
n = 6 → 9408 (This is also not a typo!)
n = 7 → 16, 942, 080 (Also not a typo.)

You get the idea.
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