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Groups

The integers mod m, Zm under addition, and U(m) the units mod m

under multiplication, are prototype examples of the concept of a ’group’
which is one of the most important ideas in mathematics.

Definition

Given a set G , a binary operation ∗ is a function which assigns to every
ordered pair of elements (a, b) ∈ G × G another element of G denoted
a ∗ b.

i.e. If a, b ∈ G then a ∗ b ∈ G which is also phrased as ’G is closed with
respect to ∗’.
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Now, this ’closure’ property is sometimes included as part of the definition
of group, but we define it separately, in order to focus on the three
fundamental aspects of what it means for a set G with a binary operation
∗, sometimes written (G , ∗), to be a group.
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Definition

A set G with a binary operation ∗, denoted (G , ∗), is a group if the
following properties hold.

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ,∈ G . [associativity]

There exists an element e ∈ G , called (an) identity, such that
a ∗ e = a and e ∗ a = a for all a ∈ G . [identity element]

For every a ∈ G , there exists b ∈ G such that a ∗ b = e and b ∗ a = e.
(Such an element b is called an inverse to a.) [inverses]

Timothy Kohl (Boston University) MA294 Lecture July 2, 2025 4 / 42



There are two quick facts we can establish about groups.

Proposition

In a group (G , ∗) the identity element is unique, and every element has a

unique inverse.

Proof

Suppose e, e′ are both identity elements in G .

Consider e ∗ e′. Since e is an identity

e ∗ e′ = e′

but since e′ is also an identity, e ∗ e′ = e, and so

e ∗ e′ = e′

e ∗ e′ = e

So e = e′.
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Proof continued

Given a in G , let b, c be inverses, and consider b ∗ a ∗ c which can be
parenthesized in two ways:

(b ∗ a) ∗ c

which must equal e ∗ c since b is an inverse of a, but e ∗ c = c .
Conversely, we can parenthesize it as

b ∗ (a ∗ c)=b ∗ e=b

again because c is an inverse of a.
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Lastly, we invoke associativity to realize that

(b ∗ a) ∗ c = c

b ∗ (a ∗ c) = b

so c = b.
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We note that the group operation is not always denoted by ∗, (which looks
like ’multiplication’) so sometimes if the group is related to arithmetic, we
use ’additive notation’ and use the symbol +.

As such, if we use a ’multiplicative’ symbol like ’∗’ then the inverse of ’a’
might be denoted a−1, in particular because inverses have now been
proven to be unique!

Similarly, if the group operation is ’additive’ we might denote the inverse
of ’a’ by −a and perhaps use the symbol ’0’ to denote the identity.

The notation though can vary greatly for different examples of groups.
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Indeed arithmetic provides our first source of examples.

Example: (Z,+) is a group (the integers with addition)
Why?

Well it’s certainly closed, i.e. a, b ∈ Z implies a + b ∈ Z.

Also a + (b + c) = (a + b) + c is a familiar fact we’re all used to.

And the number 0 is such that a + 0 = a = 0 + a, and for every a ∈ Z.

Morever, for every integer a ∈ Z, the integer −a ∈ Z where now
a + (−a) = 0 = (−a) + a.
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Before we explore more examples, let’s consider some ’non-examples’,
namely sets with binary operations that turn out not to be groups.

Keep in mind that in order for a set with a given operation to be a group,
the operation must be closed, and the associativity, identity, and inverse
axioms must hold.

As such, if any property fails, we don’t have a group structure.
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Non-Example: (Z, ·), namely the integers with multiplication.

What fails?

Well, if a, b ∈ Z then clearly a · b ∈ Z so closure holds.X

We also know that (a · b) · c = a · (b · c) so associativity holds.X

Also, the number 1 acts as the identity since a · 1 = a = 1 · a.X

As to inverses, we observe that, for example there is no integer a such that
2 · a = 1, and certainly 0 does not have a multiplicative inverse.
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This last point echoes that discussion of units mod m as we saw earlier,
which led to the development of U(m).

Indeed, Zm is not a group under multiplication since not every element has
an inverse under multiplication, especially 0.

More on this later.
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Here is another non-example based on the integers, namely (Z,−).

This is not a group even though it is closed.

What fails is associativity, and the existence of an identity, and therefore
inverses.

i.e. Generally (a − b)− c 6= a − (b − c) and while a − 0 = a, 0− a = −a.

Note also, that if one property fails, one doesn’t need to check whether
any others do hold since the group definition requires all 3 (or 4 if you
include closure) properties to hold.
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Other examples of groups.

(Q,+) - The rational numbers a
b
with addition.

closure and associativity are clear, and 0 is the identity as it is for Z, and
for a

b
∈ Q, one has − a

b
∈ Q too.

If Q∗ is the set of non-zero rationals, and · is multiplication, then (Q∗, ·) is
a group,again, closure and associativity are clear,and certainly a

b
· 1 = a

b
.

The omission of 0 gives rise to the existence of inverses for every
element,since if a

b
∈ Q∗ then b

a
∈ Q∗ and obviously a

b
· b
a
= 1.
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Recall that U(m) is constructed from Zm by omitting those elements of
Zm that don’t have inverses.

Is there a subset of Z which is a group under multiplication?

Yes, but it’s kind of small, namely {±1} since any integer a < −1 or a > 1
will not have an inverse, but (−1)(−1) = 1 and also (−1) · 1 = (−1 and
1 · (−1) = −1 and of course, 1 · 1 = 1.
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Two really simple (dare I say trivial) examples of groups.

({0},+) - literally the number zero by itself under addition

({1}, ·) - literally the number 1 under multiplication.

The verification of these is not too difficult.

Timothy Kohl (Boston University) MA294 Lecture July 2, 2025 16 / 42



And, of course, as explored earlier, (Zm,+) and (U(m), ·) are both groups,
where in Zm it’s addition mod m and in U(m) it’s multiplication mod m.

We noted in the development of Zm and U(m) that they do indeed form
groups under the different operations.

We should also note that we consider the addition and multiplication
operations on Zm, in particular how they interact via the distibutive law
a · (b + c) = a · b + a · c .

Sets which are closed with respect to two operations like this are called
rings, which is a different class of mathematical objects we’ll explore later
in the course.
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Another example of a group is the set of vectors in the plane, where the
addition is by the so-called ’parallelogram rule’ to add two vectors ~u and ~v
to get ~u + ~v .

❂
❂

❂
❂

·

~u

??�������

~v
��❃

❃❃
❃❃

❃❃
❃

~u+~v
//
✁

✁
✁

✁

And one can see that this operation is closed and associative.
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Moreover, there exists ~0 which has zero length and has the property that
~0 + ~u = ~u.

Also, for every vector ~u, the vector pointing in the opposite direction may
be denoted −~u and the sum of them is the zero vector ~0.
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Dihedral Groups

Our next example, is the first in a family of groups, which are called the
Dihedral groups, which are denoted Dn for n = 3, 4, . . . and are the ’plane
symmetries of the regular n-gon’, i.e. a polygon with n-sides all the same
length.

The first of these is D3, the group of plane symmetries of the equilateral
triangle.

3

1

2

where by plane symmetries we mean rotations and ’flips’ of the triangle
which leave the triangle as it was, except perhaps for moving its vertices.
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The symmetries of a regular n-gon consists of rotations, and flips, and
there are n of each type for a total of 2n overall.
For the case n = 3 we have D3 = {r0, r120, r240, f1, f2, f3} where the
subscript on r is the angle (in degrees) one rotates (clockwise).

We’ll get to the flips in a moment.

The first is r0 which is a clockwise rotation of 0 degrees, i.e.

3

1

2

r0

3

1

2

which doesn’t do anything to the triangle, but that’s fine, and we’ll see
how this operation will be the identity element of the group D3.
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The other two rotations act as follows:

3

1

2

r120

2

3

1

which, as you can see, cyclically moves the vertices in a clockwise fashion,
and similarly

3

1

2

r240

1

2

3

which rotates a further (1/3) turn which can, again, be seen by looking at
the vertices.
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The three flips f1, f2, f3 are obtained by drawing a line through a vertex to
the opposite side and then flipping it over the line, thereby exchanging the
other two vertices.

3

1

2

f1

2

1

3

3

1

2

f2

1

3

2

3

1

2

f3

3

2

1
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D3 = {r0, r120, r240, f1, f2, f3}

3

1

2

r0

3

1

2 3

1

2

f1

2

1

3

3

1

2

r120

2

3

1 3

1

2

f2

1

3

2

3

1

2

r240

1

2

3 3

1

2

f3

3

2

1
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To set the stage for the group ’multiplication’ we shall define for D3 we
should point out that the elements of D3 (or any Dn for that matter) are
functions whose input is the triangle, and whose output is yet another
triangle (basically the same one) but has been ’repositioned’.

i.e. Literally

r120













3

1

2













=
2

3

1

and, being functions, we can make sense of an expressions like

(f1 ◦ r120)
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= f1
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We have the set of six operations D3 = {r0, r120, r240, f1, f2, f3},so let’s
consider the ’multiplication’ on this set that turns it into a group?

For example, f1 ◦ r120 means first apply r120, and then apply f1,

3

1

2

r120

2

3

1

f1

1

3

2

and keep in mind that in the f1 operation we applied, the flip was about
the line through where the 1 vertex is at the beginning.

The key observation we wish to make is that f1 ◦ r120 is equivalent to one
of the six operations in D3, but which one?
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Observe that f1 ◦ r120

3

1

2

r120

2

3

1

f1

1

3

2

equals f2, namely

3

1

2

f2

1

3

2
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In comparison, consider r120 ◦ f1:

3

1

2

f1

2

1

3

r120

3

2

1

which equals f3, namely

3

1

2

f3

3

2

1
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So in particular, we find that

r120 ◦ f1 6= f1 ◦ r120

so the group operation in D3 is not commutative, which is different than
all the other examples of groups we’ve seen so far.

Indeed, in a group (G , ∗) it need not always be the case that a ∗ b = b ∗ a
for every a, b ∈ G .
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Recall that the arithmetic of Z4 is fully revealed by considering the table

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

which is filled in by computing all the possible i + j for i , j ∈ Z4, where i is
in the left column, and j is in the top row, and the cells are filled in with
i + j ∈ Z4.

We call such a structure, for a group (like (Z4,+) for example) a ’group
table’ or ’Cayley table’.
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Let’s consider the group table for D3.

◦ r0 r120 r240 f1 f2 f3

r0 r0 r120 r240 f1 f2 f3
r120 r120 r240 r0 f3 f1 f2
r240 r240 r0 r120 f2 f3 f1
f1 f1 f2 f3 r0 r120 r240
f2 f2 f3 f1 r240 r0 r120
f3 f3 f1 f2 r120 f240 r0

where we note how the composition gives rise to the elements in the cells,
e.g.

r120 ◦ f1 = f3

f1 ◦ r120 = f2
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Given the group table for D3 we can make some observations:

◦ r0 r120 r240 f1 f2 f3

r0 r0 r120 r240 f1 f2 f3
r120 r120 r240 r0 f3 f1 f2
r240 r240 r0 r120 f2 f3 f1
f1 f1 f2 f3 r0 r120 r240
f2 f2 f3 f1 r240 r0 r120
f3 f3 f1 f2 r120 f240 r0

r0 is the identity of D3 (Look at the gray cells in the table.)

r−1
120 = r240 and r−1

240 = r120

r120 ◦ r120 = r240 which makes sense, but also r240 ◦ r240 = r120 (Why?)

f −1
1 = f1, f

−1
2 = f2, and f −1

3 = f3 (Yes, this can happen.)
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The one axiom for being a group we haven’t discussed for the case of D3

is associativity.

That is, how to we know that, for example

f1 ◦ (r120 ◦ r120) = (f1 ◦ r120) ◦ r120

or for any other composition in D3?

The reason that this is true is that the group operation is function
composition.
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Recall from basic algebra/calculus that if, for example f (x) = ex ,
g(x) = cos(x) and h(x) = x + 1 what it means to compose (f ◦ g)(x)
which is f (g(x)) = eg(x) = ecos(x).

And for three functions we have
(f ◦ g ◦ h)(x) = f (g(h(x))) = eg(h(x)) = ecos(h(x)) = ecos(x+1).

The point is, (f ◦g)◦h = f ◦ (g ◦h) since, applied to a given x , one applies
h first, then g , and then f , i.e. we can drop the parentheses and simply
write it as (f ◦ g ◦ h)(x), which is exactly what associativity is all about.
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As noted earlier, function composition is not commutative and for groups
we don’t necessarily expect the group operation to be commutative.

Definition

A group (G , ∗) is commutative or abelian (after N.H. Abel) if for all
a, b ∈ G one has a ∗ b = b ∗ a.

Note: If for even one pair of elements a,b one has a ∗ b 6= b ∗ a then G is
non-abelian.
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Also, being non-abelian does not say that a ∗ b 6= b ∗ a for all a, b, only
that it happens for at least one a, b.

We’ve seen already some examples of abelian groups, e.g. (Z,+),
(Zm,+), and (U(m), ·).

And we’ve already established that D3 is non-abelian.
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There is another important example of a non-abelian group, which comes
from the study of matrices in linear algebra.

Recall that if

(

a b

c d

)

and

(

x y

z w

)

are 2× 2 matrices, that we can

multiply them as follows

(

a b

c d

)(

x y

z w

)

=

(

ax + bz ay + bw

cx + dz cy + dw

)

and one may show (after a bit of calculation) that for matrices M, N, P ,
that (MN)P = M(NP), namely that matrix multiplication is associative.
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Also recall that if I =

(

1 0
0 1

)

then

(

a b

c d

)(

1 0
0 1

)

=

(

a b

c d

)

(

1 0
0 1

)(

a b

c d

)

=

(

a b

c d

)

and furthermore, if M =

(

a b

c d

)

then δ = det(M) = ad − bc (the

determinant).
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So if δ 6= 0 then we can define N = 1
δ

(

d −b

−c a

)

=

(

d/δ −b/δ
−c/δ a/δ

)

.

This matrix has the property that MN = I and NM = I , namely N = M−1

the inverse of M.
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This combination leads to the following group definition.

Definition

The 2nd general linear group (over the reals R)

GL2(R) = {2× 2 invertible matrices with entries in R}

= {2× 2 real matrices A where det(A) 6= 0}

And, as we’ve just demonstrated, this is a group, and moreover an infinite

group since it contains infinitely many members.
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Note also, we could replace R with the integers Z and get another version
of this,

GL2(Z) = {2× 2 invertible matrices with entries in Z}

the only difference would be that the invertibility of a given integer matrix
is a bit more subtle than it is for real matrices.

Specifically recall that if M =

(

a b

c d

)

then δ = det(M) = ad − bc (the

determinant) where (if M had real entries)

M−1 =
1

δ

(

d −b

−c a

)

=

(

d/δ −b/δ
−c/δ a/δ

)
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But for

M−1 =
1

δ

(

d −b

−c a

)

=

(

d/δ −b/δ
−c/δ a/δ

)

the issue is that 1
δ
is real provided δ 6= 0, but if M is an integer matrix,

then δ ∈ Z only if δ = ±1.

The upshot of this is that for an integer matrix M to be invertible, one
must have that det(M) = ±1, not just that it be non-zero!
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