
MA294 Lecture

Timothy Kohl

Boston University

July 3, 2025

Timothy Kohl (Boston University) MA294 Lecture July 3, 2025 1 / 31



Other basic facts about groups:

Proposition

Let x , y , z , a, b be elements of a group (G , ∗) then

x ∗ y = x ∗ z → y = z (left cancellation)

a ∗ x = b ∗ x → a = b (right cancellation)

Proof.

x ∗ y = x ∗ z

x−1 ∗ x ∗ y = x−1 ∗ x ∗ z (Note, we multiply both sides on the left.)

e ∗ y = e ∗ z

y = z

A similar argument works for the other statement.
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These ’cancellation’ rules imply the following.

Proposition

The Cayley table for a group (G , ∗) is a latin square.

Why? If we look at a row of the Cayley table:

∗ y . . . z

x x ∗ y x ∗ z

we cannot have x ∗ y = x ∗ z unless y = z by left cancellation so there are
no repeats in a given row.
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And for columns:

∗ x . . .

a a ∗ x

b b ∗ x

we find that a ∗ x = b ∗ x only if a = b so there are no repeated elements
in a column.
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The Order of a Group Element

Definition

In a group (G , ∗) if a ∈ G and n ≥ 1 is an integer, then

an = a ∗ a ∗ · · · ∗ a
︸ ︷︷ ︸

n-times

That is a1 = a, a2 = a ∗ a, a3 = a ∗ a ∗ a, and similar to how one defines a0

for a number, we define a0 = e, the identity of G .

And the use of the notation ’a−1’ for the inverse, fits in with this
definition, since

a−1 ∗ a = a−1 ∗ a1 = a(−1)+1 = a0 = e

and similarly, we may define a−n to be a−1 ∗ a−1 ∗ · · · ∗ a−1 = (a−1)n.
That is, exponents in groups, work like they do for numbers.
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Notation Alert: If ∗=’+’ like in Z or Zm then instead of writing

an = a ∗ a ∗ · · · a

we write

na = a+ a + · · ·+ a

so that, for example, if 2 ∈ Z5 we have 3 · 2 = 2 + 2 + 2 = 6 = 1.
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An important, yet not so obvious point is that for any a ∈ G and any n
the power an ∈ G by the closure property.

The simplest way to see this is by noting that

an = a ∗ a ∗ · · · ∗ a
︸ ︷︷ ︸

(n − 1)-times

∗a

namely an−1 ∗ a.

So if we assume that an−1 ∈ G then an−1 ∗ a ∈ G so an ∈ G .

And the same holds for negative powers.

Timothy Kohl (Boston University) MA294 Lecture July 3, 2025 7 / 31



Other examples:
In D3, we have

r0120 = r0

r1120 = r120

r2120 = r120 ◦ r120 = r240

r3120 = r2120 ◦ r120 = r240 ◦ r120 = r0 [Why?]

r4120 = r3120 ◦ r120 = r0 ◦ r120 = r120 [Note: We’re back at r120]

r−1
120 = r240

r−2
120 = r120

r−3
120 = r0
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For the flips like f1, the powers are a bit simpler

f 01 = r0

f 11 = f1

f 21 = r0

f 31 = f1

f −1
1 = f1
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And in Z6 we have

0 · 2 = 0

1 · 2 = 2

2 · 2 = 2 + 2 = 4

3 · 2 = 2 + 2 + 2 = 0

4 · 2 = 2 + 2 + 2 + 2 = 2

(−1) · 2 = (−2) = 4

(−2) · 2 = (−4) = 2

etc...
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The discussion of powers of elements leads naturally to the concept of
’order’ of an element.

Definition

If x ∈ G where G is finite, then the order of x is the least positive integer
m such that xm = e, in which case we write |x | = m.

If G is infinite, then it’s possible that x , x2, x3, . . . are all distinct
(non-identity) elements of G , in which case we say that x has
infinite order and we write |x | = ∞.

Note, if G is infinite, (as a set) it’s still possible that it has elements of
finite order, there are many possibilities.
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Examples:

For 2 ∈ Z6 we have 1 · 2 = 2, 2 · 2 = 4 and 3 · 2 = 0 and so |2| = 3.

In D3, |r120| = 3 since r2120 = r240 and r3120 = r360 = r0

In contrast, |f1| = 2 since f 21 = r0.

For the element 1 ∈ Z we have the multiples 1, 1+1 = 2, 1+1+1 = 3, . . .
none of which ever equals 0, so 1 has infinite order.

Note, for any group G , the identity element e has order 1, and it is the
unique element of order 1.
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Consequences of Order

If x ∈ G has order m then x2m = (xm)2 = e2 = e, and similarly x3m = e
etc.

Theorem

If x ∈ G and |x | = m then x t = e if and only if m|t.

Proof.

Suppose x t = e, where t is not a multiple of m then by the division
algorithm t = qm + r where r ∈ {1, . . . ,m − 1} (i.e r 6= 0) which means
x t = xqm+r = xqmx r .

But xqm = (xm)q = e so we have that x t = x r but then since x t = e then
x r = e.

However, since r < m this contradicts the fact that |x | = m, which is the
least positive power of x which is the identity.
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What can happen is that for some groups G , there is an x ∈ G such that
G = {e, x , x2, . . . , xm−1} and one says that x generates G .

Also, we sometimes use the notation of ’1’ for the identity which is
consistent with the usual view of raising a number to the zero-th power
being 1, i.e. x0 = 1, so that if G is generated by x , it consists of
{1, x , x2, . . . , xm−1} if |x | = m.

If G is generated by x the we write G = 〈x〉, and we sometimes say G is a
cyclic group since the powers of x ’cycle’ through these distinct powers, i.e.

1, x , x2, . . . , xm−1, xm = 1, xm+1 = x , xm+2 = x2, . . . etc.
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If G is infinite, then it’s possible that for some element x one has that
G = 〈x〉 = {xn | n ∈ Z}.

How does this work?

Well, it simply means that each non-zero power of x is not the identity of
G , so that G consists of

{. . . , x−3, x−2, x−1, x0 = 1, x1 = x , x2, x3, . . . }

in which case we say that G is an infinite cyclic group.
The prime example of this is Z = 〈1〉 since every element of Z is a
multiple of 1.

In fact, we can use this idea to actually define an infinite group consisting
of powers of x .
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For x a ’variable’ (symbol, whatever), one can define ’the’ infinite cyclic
group

C∞ = {xn | n ∈ Z}

with the group operation being based on the rules of exponents, namely:

x i ∗ x j = x i+j

which is very naturally closed, and associative since

x i ∗ (x j ∗ xk) = x i ∗ x j+k = x i+j+k

which is the same as (x i ∗ x j) ∗ xk = x i+j ∗ xk .
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Moreover, it contains an identity element 1 = x0 since clearly x0 ∗ x i = x i

and x i ∗ x0 = x i , and similarly every element x i has inverse x−i .

If you’ve observed that the operations in C∞ mirror those of the integers,
you are correct, but the interesting contrast is that C∞ is ’multiplicative’
while Z is an additive group.
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Group Isomorphisms

Observe that in parallel, in Z one has m · 1 + n · 1 = (m + n) · 1 = m + n
and in C∞ we have xm · xn = xm+n, i.e. the exponents in C∞ add
together just as the integers do in Z.

Definition

If (G1, ∗1) and (G2, ∗2) are groups, then a bijection β : G1 → G2 is an
isomorphism if one has

β(g ∗1 h) = β(g) ∗2 β(h)

for all g , h ∈ G1, and we call such a bijection β an isomorphism and write
G1

∼= G2 and say G1 and G2 are isomorphic. (iso=same,morph=form)
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Recall that a bijection β : G1 → G2 is a function which is 1-1, namely that
β(x) = β(y) implies x = y and onto, namely that for every z ∈ G2 there
exists x ∈ G1 such that β(x) = z .

An isomorphism is therefore a bijection which ’respects’ the group
structures in both groups, so that, in some way, the groups G1 and G2 are
equivalent (although not necessarily equal) as groups.
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Our first example has already been explored but let’s make it official.

(Z,+) ∼= (C∞, ·)

by virtue of the function β : Z → C∞ given by β(m) = xm.

We can verify that β is a bijection.
If β(m) = β(n) then xm = xn which means

xm · x−n = xnx−n

↓

xm−n = x0 = 1

↓

m − n = 0

↓

m = n
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And that β : Z → C∞ is onto is pretty obvious.

As to respecting the two group structures, observe that
β(m +

Group op in Z

n) = xm+n = xm · xn = β(m) ·

Group op in C∞

β(n)

and so β is a group isomorphism.
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And just as we defined C∞ as an infinite group consisting of distinct
powers {x i} we can also define the finite cyclic group or order (size) m for
any m > 1.

Definition

Let Cm = {1, x , . . . , xm−1} with group operation x i · x j = x i+j mod m,
namely add the exponents mod m.

For example C6 = {1, x , x2, x3, x4, x5} where, for instance,
x3 · x4 = x7 = x1 since 7 ≡ 1 (mod 6), and where, x−i is xm−i = x6−i ,
e.g. x−2 = x4.
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And the following is not unexpected.

Theorem

The map β : (Zm,+) → (Cm, ·) given by β(i) = x i is an isomorphism of
groups, namely (Zm,+) ∼= (Cm, ·).
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Beyond cyclic groups, there are examples of groups that can be
constructed by combining different groups together.

Definition

Given groups (G1, ∗1) and (G2, ∗2) their direct product is the group
defined on the set G1 × G2 = {(a, b) | a ∈ G1 and b ∈ G2} where the
group operation is defined as follows:

(a, b) ∗ (x , y) = (a ∗1 x , b ∗2 y)

namely the group operations in each coordinate are those of the individual
Gi .
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For example, the identity of G1 × G2 is (e1, e2) where ei is the identity of
Gi since (a, b) ∗ (e1, e2) = (a ∗1 e1, b ∗2 e2) = (a, b).

Also, (a, b)−1 = (a−1, b−1) since

(a, b) ∗ (a−1, b−1) = (a ∗ a−1, b ∗ b−1)

= (e1, e2)
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Note, if for a group G we define |G | to be the size of G as a set, then if
|G1| and |G2| are finite then it’s pretty clear that

|G1 × G2| = |G1| · |G2|

which means that we can create groups of different sizes from smaller
groups by joining them in a direct product.

The nature of the direct product is not always so obvious, but at least we
can work out the details if we know the stucture of each ’component’.
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Example: Let C2 = {1, x} the cyclic group of order 2 and let
C3 = {1, y , y2} be the cyclic group of order 3.

We use the symbol ’y ’ in C3 to prevent confusion with the ’x ’ in C2.

So x2 = 1 and y3 = 1 and therefore

C2 × C3 = {(1, 1), (1, y), (1, y2), (x , 1), (x , y), (x , y2)}

is a group with 6 elements.

So what is the nature of this group?

i.e. Is this group isomorphic to a group we know?
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Again, the multiplication in C2 × C3 is ’coordinate-wise’, for example
(x , y)(1, y2) = (x · 1, y · y2) = (x , 1), and (x , y)−1 = (x−1, y−1) = (x , y2).

CLAIM: C2 × C3
∼= C6

How?

The key observation we want to make is that C6, being cyclic, is generated
by a single element of order 6, namely C6 = 〈z〉 = {1, z , z2, z3, z4, z5},
specifically every element is a power of a single element.
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Define

β : C6 = {1, z , .., z5} → C2×C3 = {(1, 1), (1, y), (1, y2), (x , 1), (x , y), (x , y2)}

by β(z) = (x , y). (What does this mean?)

Defining β(z) = (x , y) implies that
β(z2) = β(z · z) = β(z)β(z) = (x , y)(x , y) = (x2, y2) = (1, y2).

Keeping going in this direction we have
β(z3) = β(z2 · z) = β(z2) · β(z) = (1, y2)(x , y) = (x , y3) = (x , 1).

Keeping going we get β(z4) = β(z3)β(z1) = (x , 1)(x , y) = (1, y), and
β(z5) = (x , y2).

That is, β(z) = (x , y) implies β(zk) = (x , y)k , and it follows that β is 1-1
and onto.
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Given that 2 · 3 = 6, this example makes one wonder if Cm × Cn
∼= Cmn?

The answer is, not generally, except in the following case.

Theorem

Cm × Cn
∼= Cmn if and only if gcd(m, n) = 1.

Proof.

(Sketch - The book has the full proof.)

If Cm = 〈x〉 and Cn = 〈y〉 where gcd(m, n) = 1 then one can prove that
|(x , y)| = mn. (Exercise!)

As such, if Cmn = 〈z〉 one can define β : Cmn → Cm × Cn by β(z) = (x , y)
which is 1-1 and onto and preserves the group structure, because if
β(z) = (x , y) then β(z i ) = (x , y)i = (x i , y i).
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For perspective, let’s consider the group C2 × C2 which we can represent
as Z2 × Z2 which is actually the usual way this group is examined.

As Z2 = {0, 1} then let V = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

This group is not isomorphic to Z4, in particular because

Z4 = 〈1〉 = {0, 1, 1 + 1, 1 + 1 + 1}

while in contrast, V is not generated by a single element, since
(1, 0) + (1, 0) = (0, 0), (0, 1) + (0, 1) = (0, 0), and (1, 1) + (1, 1) = (0, 0).
That is, every element except the identity has order 2.

V is called the Klein-4 group (Vierergruppe), although there are several
’versions’ of this group, which are all isomorphic, but this one is fairly
concrete.
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