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Going back to C6 and Z6 which we demonstrated were isomorphic, we
note that if G1

∼= G2 for two (finite) groups then we obviously must have
that |G1| = |G2|.

But does |G1| = |G2| imply that G1
∼= G2?

The answer is most definitely no as the example of Z4 and V = Z2 × Z2

demonstrates.

But how do we know that they aren’t isomorphic?
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Here is a small but important fact:

Lemma

If β : G1 → G2 is an isomorphism of groups then β(e1) = e2 where e1 is
the identity of G1 and e2 is the identity of G2.

The reason for this is that for g ∈ G1 we have β(g ∗ e1) = β(g) ∗ β(e1)
but β(g ∗ e1) = β(g) since e1 is the identity of G1.
But if we call β(g) = z and β(e1) = w then we have

z = z ∗ w

in G2, and if we multiply both sides on the left by z−1 we get

z−1 ∗ z = z−1 ∗ z ∗ w

↓

e2 = w

i.e. β(e1) = e2.
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Lemma

If β : G1 → G2 is an isomorphism of groups, then for each x ∈ G1, it
follows that |x | = |β(x)|.

Suppose |x | = m and |β(x)| = n where n < m then this says β(x)n = e2
where e2 is the identity in G2.
But β(x)n = β(xn) and so β(xn) = e2.
But since β is 1-1 and β(e1) = e2 then we must have xn = e1.
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But recall, |x | = m and n < m and so xn = e1 is impossible, since by
definition of order, m is the smallest power of x which is the identity.
So we cannot have |β(x)| < |x |, and similarly we can show that we also
cannot have |x | < |β(x)|.
So we conclude that we must have |x | = |β(x)|.
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So, going back to Z4 vs. Z2 × Z2, if there were an isomorphism
β : Z4 → Z2 × Z2 then β(1) would be an element of order 4 in Z2 × Z2,
which doesn’t exist!
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Another consequence of the isomorphism definition is that, even if
|G1| = |G2|, if G1 is abelian, but G2 is not, then there is no isomorphism
β : G1 → G2.

As such, Z6 is definitely not isomorphic to D3.

Timothy Kohl (Boston University) MA294 Lecture July 7, 2025 7 / 34



Subgroups

Definition

A subset H ⊆ G (for G a group) is a subgroup if H itself is a group with
respect to the same group operation it inherits from G .
Notation: If so, then we write H ≤ G .

Example: G = Z and let H = 〈2〉 = 2Z = {even integers} = {2n | n ∈ Z}

Observe this is a subgroup since 2m + 2n = 2(m + n) so it’s closed, and
0 = 2 · 0 ∈ H, and for 2m ∈ H we note that −2m = 2(−m) ∈ H so H is
indeed a group in and of itself.
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Note, we do not need to check that the group operation in H is associative
since it’s contained in a group (namely G ) which is already associative.

Timothy Kohl (Boston University) MA294 Lecture July 7, 2025 9 / 34



Example:

G = D3 = {r0, r120, r240, f1, f2, f3}

H = 〈r120〉 = {r0, r120, r240}

H is a subgroup since the composition of two rotations is a rotation so H
is closed, and the identity r0 ∈ H, and r−1

120 = r240 (and symmetrically
r−1
240 = r120) so H contains inverses for all its elements.

Similarly K = 〈f1〉 = {r0, f1} is a subgroup since f1 ◦ f1 = r0 and r0 ∈ K
and f −1

1 = f1 so K contains inverses etc.
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Note, not all subsets of a group G are subgroups, for example

H̃ = {r0, r120.r240, f1}

is not a subgroup since r120 ◦ f1 = f3 6∈ H̃.

i.e. H̃ is not closed.
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Verifying that H ⊆ G is a subgroup can be simplified.

Subgroup Test

H ⊆ G is a subgroup if
(i) a, b ∈ H implies ab ∈ H (closure)
(ii) a ∈ H implies a−1 ∈ H

We note that associativity does not need to be checked, and (i) and (ii)
imply that H contains the identity. (Why? - Exercise)
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An application of this test is the following basic class of examples of
subgroups.

Definition

If x ∈ G and if |x | = m then H = 〈x〉 = {e, x , x2, . . . , xm−1} is the cyclic
subgroup generated by x which is a subgroup of G .

If x has infinite order then H = 〈x〉 = {. . . , x−2, x−1, e, x , x2, . . . } is also a
subgroup of G .

Why is this always a subgroup?

If x i , x j ∈ H then x ix j = x i+j ∈ H and x i ∈ H implies x−i ∈ H since H
consists of all powers of x so it must contain x−i .
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A more advanced example of where this test is used is for subgroups which
are defined by a property that determines whether an element is in the
subgoup or not, rather than an explicit list of elements.

The following example is interesting, especially in light of the fact that
there are groups which are non-abelian.

Definition

For G a group, the center of a group is

Z (G ) = {z ∈ G | zg = gz for all g ∈ G}

which is the set of those elements of G which commute with every
element of G .
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Why is Z (G ) a subgroup?

Well, if z1, z2 ∈ Z (G ) then we wish to show z1z2 ∈ Z (G ).

If g ∈ G then z1z2g = z1(z2g) = z1(gz2) = (z1g)z2 = (gz1)z2 = gz1z2
and so, indeed, z1z2 ∈ Z (G ).

If now z ∈ Z (G ) and g ∈ G then zg = gz so z−1zg = z−1gz namely
g = z−1gz and so gz−1 = z−1gzz−1, that is gz−1 = z−1g .

That is, z ∈ Z (G ) implies z−1 ∈ Z (G ).
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So what does Z (G ) look like?

For abelian groups G , if you look at the definition it’s pretty clear that
Z (G ) = G .

In contrast, Z (D3) = {r0} (i.e. just the identity) which can happen,
although for other non-abelian groups, G , it turns out that Z (G ) is a
proper subgroup, neither {e} nor all of G .

As we shall see, the nature of the subgroups of a group is very important
to ones understanding of the group itself.
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Coset and LaGrange’s Theorem

One of the key result in (finite) group theory centers around the
relationship between a given group and its subgroups.

Definition

Let H be a subgroup of a (finite) group G and for g ∈ G

the left coset gH = {gh | h ∈ H}

the right coset Hg = {hg | h ∈ H}

So if H = {h1, . . . , hm} for example, then gH = {gh1, . . . , ghm} and
Hg = {h1g , . . . , hmg}.
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Example: Let G = D3 and H = 〈r120〉 = {r0, r120, r240}.

f1H = {f1 ◦ r0, f1 ◦ r120, f1 ◦ r240}

= {f1, f2, f3}

or, if K = 〈f1〉 = {r0, f1} then

r120K = {r120 ◦ r0, r120 ◦ f1}

= {r120, f3}

and, in contrast

Kr120 = {r0 ◦ r120, f1 ◦ r120}

= {r120, f2}

which shows that we can’t expect gH = Hg necessarily.
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Important Obervations

gH and Hg are not necessarily equal.

gH and Hg are both subsets of G , but generally not subgroups.

In fact, gH is a subgroup only if g ∈ H, in which case gH = H.
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Notation Alert: If G is an ’additive’ group like Z or Zm then we use
additive notation for the cosets.

For example: Consider (Z,+) and let H = 3Z = 〈3〉 so that

H = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . . }

where now, for example 1 + H = {. . . ,−8,−5,−2, 1, 4, 7, 10, . . . }.

This example can be used to demonstrate another interesting fact, namely
that g1H = g2H (or g1 + H = g2 + H) even if g1 6= g2.

Observe for H = 3Z above that 4 + H = {. . . ,−5,−2, 1, 4, 7, 10, 14, . . . }
which is the same as 1 + H.

Why?(We’ll get back to this question soon.)
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Our goal is to show an important relationship between the size of a group,
and the size of any subgroup.

Proposition

For H ≤ G a subgroup, and g ∈ G one has that |gH| = |H| and
|Hg | = |H|.

Proof.

Define f : H → gH by f (h) = gh and observe that if f (x) = f (y) then
gx = gy which implies that g−1gx = g−1gy , that is, x = y so f is 1-1.

And if gz ∈ gH then it’s pretty clear that gz = f (z) so f is onto, and
therefore a bijection, and so the cardinality of the domain and range are
the same, i.e. |H| = |gH|, and a similar argument shows that |H| = |Hg |
too.
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Going further into the study of cosets, we have the following.

Proposition

If H ≤ G is a subgroup, then for g1, g2 ∈ G, either g1H = g2H or
g1H ∩ g2H = ∅.

Proof.

Suppose g1H ∩ g2H 6= ∅ then there exists some x in the intersection. So
x = g1h1 and x = g2h2, i.e. g1h1 = g2h2 so g1 = g2h2h

−1
1 .

Now, if g1k ∈ g1H then g1k = g2h2h
−1
1 k = g2(h2h

−1
1 k) where

h2h
−1
1 k ∈ H. (Why?)

This implies that g1k ∈ g2H and so g1H ⊆ g2H.
Similarly, g1h1 = g2h2 implies that g2 = g1h1h

−1
2 and so if g2t ∈ g2H (i.e.

t ∈ H) then g2t = g1h1h
−1
2 t = g1(h1h

−1
2 t) where h1h

−1
2 t ∈ H, which

means g2t = g1h1h
−1
2 t ∈ g1H, thus g2H ⊆ g1H.

Thus g1H = g2H

Timothy Kohl (Boston University) MA294 Lecture July 7, 2025 22 / 34



Note, if H ≤ G and e ∈ G is the identity, then eH = H since if
H = {h1, h2, . . . hm} then eH = {eh1, eh2, . . . , ehm} = {h1, . . . , hm}.

And, in general, gH = H if and only if g ∈ H. Exercise!

Lastly, for H ≤ G , one has g ∈ gH since if H = {h1, . . . , hm} then,
assuming h1 = e we have gH = {gh1, . . . , ghm} where now, gh1 = ge = g .

This last observation may seem somewhat trivial, but it highlights the fact
that, with respect to a given subgroup H ≤ G , every element g ∈ G lies in
at least one coset of H.

And even though it may be that g1H = g2H the elements of G are such
that every element of G lies in exactly one coset of H in G .
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What this implies is that, if G is finite, then for H ≤ G one has some
elements (called coset representatives) g1, . . . , gr such that

G = g1H ∪ g2H ∪ · · · ∪ grH

where each coset above is distinct, i.e. giH ∩ gjH = ∅ for i 6= j .

Note, we can assume that g1 = e since one of the cosets must be the
’trivial’ coset, namely H itself, i.e. eH = H.

So G can be partitioned into a union of disjoint cosets.

This has important implications for finite groups.
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Example: D3 = {r0, r120, r240, f1, f2, f3} and H = {r0, r120, r240}.

The first coset to consider is the trivial coset

r0H = {r0 ◦ r0, r0 ◦ r120, r0 ◦ r240} = {r0, r120, r240}

Since this is clearly not all of D3, we look for an element of D3 not in H,
say f1 and look at what coset we get.

f1H = {f1 ◦ r0, f1 ◦ r120, f1 ◦ r240} = {f1, f2, f3}

and then we see that r0H ∪ f1H = D3 so we are done, i.e. there are no
other cosets to make which are disjoint from these two.
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Similarly, if K = {r0, f1} then we can show that

D3 = r0K ∪ r120K ∪ r240K

where r0K = K , r120K = {r120, f3} and r240K = {r240, f2}.

We note the fact (observed earlier) that the size of each coset is the same
as the size of the subgroup, which, as we’ll see, is an important fact.
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Lagrange’s Theorem

Theorem

If G is a finite group and H ≤ G then |H|
∣

∣ |G |.

Proof.

We’ve already established most of the important facts.

We know that with respect to H, there exists elements of G , g1, . . . , gr
such that

G = g1H ∪ g2H ∪ · · · ∪ grH

where each coset is disjoint from the others, and so

|G | = |g1H|+ |g2H| + · · · + |grH|

and the proof is finished by recalling the other fact we noted, which is that
|giH| = |H| for each gi and so |G | = r |H|, that is |H|

∣

∣ |G |.
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One other point to mention about cosets is related to notation.

Definition

If H ≤ G then the number of distinct cosets of H in G is the index of H in
G and is denoted [G : H].

We note, that if G is finite, then Lagrange’s theorem implies that
[G : H] = |G |

|H| .

We note, for reference, that [G : H] also makes sense for infinite groups.
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Consider G = Z and H = 2Z ≤ G , namely H = {. . . ,−4,−2, 0, 2, 4, . . . }
and start with the trivial coset

0 + H = {. . . ,−4,−2, 0, 2, 4, . . . } (all even integers!)

and since this is not all of Z we pick an element not in H, say 1 and
consider the coset

1 + H = {. . . ,−3,−1, 1, 3, 5 . . . } (all odd integers!!)

and we realize that there are no other elements not already accounted for,
so we’re done and we can write

Z = (0 + H) ∪ (1 + H) i.e. the union of the even and odd integers

so [Z : 2Z] = 2.

Exericse: What is [Z : mZ] where mZ = 〈m〉?
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One other thing to note is that everything we say about left cosets, holds
for right cosets as well, so there’s no particular ’preference’ for left cosets
over right cosets.

That is, the number of left cosets of a subgroup H ≤ G is the same as the
number of right cosets, and a group can be partitioned into a disjoint
union of right cosets.

The only point to reiterate is that for a given subgroup, H ≤ G it need not
be the case that gH = Hg .
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Here is one of the first applications of Lagrange’s theorem, and what is
kind of extraordinary is how simple the proof is, considering the depth of
the statement being proved.

We have seen that, for example, there are two groups with 4 elements, for
example Z4 and V = Z2 × Z2 and a general question that’s important in
group theory is:

How many distinct groups are there of a given order (size)?

where by distinct, we mean not isomorphic, for example Z4 6∼= Z2 × Z2.

For |G | = 4 for example, it turns out that there are only 2 non-isomorphic
groups, namely Z4 and Z2 × Z2 but, in general, it gets harder to figure out
the number of different groups of order (size) n as n gets larger.
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We can say this however.

Theorem

If |G | = p for p a prime number, then G ∼= Cp . (where Cp
∼= Zp)

Proof.

Let x ∈ G and consider H = 〈x〉 ≤ G .

If x = e then |H| = 1 of course. If x 6= e then |H| > 1 but, by Lagrange’s
theorem, |H|

∣

∣|G |.

However, since |G | = p then, since |H| > 1 we must have |H| = p, so that
H = {e, x , x2, . . . , xp−1}.

But |H| = |G | = p and H is a subset of G , which means H = G , but this
means G = 〈x〉 and so G ∼= Cp, the cyclic group of order p.
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This is somewhat extraordinary since it implies, for example that there is
exactly 1 group of order 127, but, in contrast, it is known that there are
2328 groups of order 128!

Again, the number of distinct groups of a given size is, in fact, an open
problem in group theory.

Timothy Kohl (Boston University) MA294 Lecture July 7, 2025 33 / 34



One of the other facts we can infer from looking at the proof of the above
theorem is this.

Proposition

If G is a finite group, say |G | = n then for x ∈ G, one has |x |
∣

∣n. (i.e.
|x |

∣

∣|G |)

Why?

Quite simply, if x ∈ G , then x gives rise to the subgroup
H = 〈x〉 = {e, x , . . . , xm−1} for some m where |x | = m = |H|, so by
Lagrange’s theorem, m|n.
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