MA 294 - Turn in #2

(1) For groups G_1 and G_2 a function $f: G_1 \to G_2$ is a homomorphism if

$$f(g *_1 h) = f(g) *_2 f(h)$$

for every $g, h \in G_1$.

Let $K = \{g \in G_1 \mid f(g) = e_2\}$ where e_2 is the identity of G_2 .

(a) Show that K is a subgroup of G_1 .

(b) Show that if f is one-to-one then $K = \{e_1\}$ and conversely that if $K = \{e_1\}$ then f must be one-to-one.

[10 points]

(2) For
$$n > 1$$
 let $G = \{ \sigma \in S_n \mid \sigma(1) = 1 \}$.

(a) Show that G is a subgroup of S_n .

(b) Determine |G|?

[10 points]

[This question is not for points so if you're not sure, don't worry.]

What group do you think G isomorphic to?