MA 294 - Turn in \#2

(1) For groups G_{1} and G_{2} a function $f: G_{1} \rightarrow G_{2}$ is a homomorphism if

$$
f\left(g *_{1} h\right)=f(g) *_{2} f(h)
$$

for every $g, h \in G_{1}$.
Let $K=\left\{g \in G_{1} \mid f(g)=e_{2}\right\}$ where e_{2} is the identity of G_{2}.
(a) Show that K is a subgroup of G_{1}.
(b) Show that if f is one-to-one then $K=\left\{e_{1}\right\}$ and conversely that if $K=\left\{e_{1}\right\}$ then f must be one-to-one.
[10 points]
(2) For $n>1$ let $G=\left\{\sigma \in S_{n} \mid \sigma(1)=1\right\}$.
(a) Show that G is a subgroup of S_{n}.
(b) Determine $|G|$?
[10 points]
[This question is not for points so if you're not sure, don't worry.]
What group do you think G isomorphic to?

