MA 294 - Turn in \#4

(1) Let $f(x)=x^{3}+3 x^{2}-2 x-4$ and $g(x)=x^{2}+2 x+1$ which are polynomials in $\mathbb{Z}[x]$.

It turns out that one can find polynomials $q(x), r(x) \in \mathbb{Z}[x]$ such that $f(x)=q(x) g(x)+r(x)$.
(a) Determine $q(x)$ and $r(x)$.
(b) By reducing coefficients mod p (for p a prime) one gets polynomials $\bar{f}(x), \bar{g}(x) \in \mathbb{Z}_{p}[x]$.
Is there a p such that $\bar{g}(x)$ evenly divides $\bar{f}(x)$?
(2) For a, b in a commutative ring

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

which is, of course, the Binomial Theorem.
If $a^{p}=0$ and $b^{q}=0$ for positive integers p, q
find the least n which guarantees that $(a+b)^{n}=0$.

