MA542 Lecture

Timothy Kohl

Boston University

January 29, 2025

Beyond the distinction between commutative and non-commutative rings, we can subdivide the category of rings into other 'subcategories' or classes, based on particular global characteristics.

Note, there is a notion in mathematics of 'category' which has a formal definition, but here we will use the term somewhat loosely to distinguish between different types of rings due to properties they share.

We begin with a subcategory of the category of commutative rings, known as integral domains, whose definition has a direct connection with the idea of 'cancellation' we discussed earlier, namely when does ab = ac imply b = c?

Consider the following:

In
$$M_2(\mathbb{R})$$
 the zero element is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and one can show that $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

i.e. the product of two non-zero elements (matrices) is the zero

A more simple example is in the ring \mathbb{Z}_6 where we have $2 \cdot 3 = 0$ since $2 \cdot 3 = 6 \equiv 0 \pmod{6}$ but where $2 \neq 0$ and $3 \neq 0$ of course.

In \mathbb{Z} this can't happen, namely $a \neq 0$ and $b \neq 0$ implies $ab \neq 0$, or, equivalently, ab = 0 implies a = 0 and/or b = 0.

Definition

A non-zero element 'a' of a ring R is a <u>zero divisor</u> if for some other non-zero element $b \in R$ one has ab = 0.

Definition

An integral domain (or simply <u>domain</u>) is a commutative ring, with unity, without zero divisors.

There are many examples!

• Z

• Q

- R
- C
- $\mathbb{Z}[i]$ (exercise)

•
$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$$

It is a nice exercise to prove that not only is $\mathbb{Z}[\sqrt{2}]$ a (commutative) ring but that it is a domain.

Note, the quaternions $\mathbb H$ have no zero-divisors, but as it's not commutative, we don't call it a domain.

We've seen that \mathbb{Z} is a domain, but that, for example, \mathbb{Z}_6 is not.

However, there are some \mathbb{Z}_n which are domains.

We first pause to observe that $1 \in R$ is **never** a zero-divisor.

 $\mathbb{Z}_2 = \{0,1\}$ is domain since $1 \cdot 1 = 1$.(Not terribly exciting of course.)

Also $\mathbb{Z}_3 = \{0, 1, 2\}$ is too since $2 \cdot 2 = 1$.

However in $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ we have $2 \cdot 2 = 0$.

So what's the pattern?

Theorem

 \mathbb{Z}_n is a domain if and only if n is a prime.

Proof.

If *n* is not a prime, then $n = r \cdot s$ for two numbers r, s < n so r, s may be regarded as elements of \mathbb{Z}_n and rs = 0.

If n = p is prime and if $a, b \in \mathbb{Z}_p$ are non-zero elements, then a < p and b < p.

So if ab = 0 then p divides ab but that means either p divides a or p divides b, which is impossible.

Proposition

A field is an integral domain.

Proof.

Recall that a fields is a commutative ring with unity where every non-zero element has a multiplicative inverse.

So suppose $a, b \in F$ are elements of a field F such that ab = 0. If $a \neq 0$ then $a^{-1} \in F$ and so

$$a^{-1}ab = a^{-1}0$$
 \downarrow
 $1b = 0$
 \downarrow
 $b = 0$

which means that F has no-zero divisors.

We will explore fields in much more detail later on, but we can pause to give a few other examples of fields besides the 'canoncial' examples \mathbb{Q},\mathbb{R} , and \mathbb{C} .

There are many interesting examples 'in between' $\mathbb Q$ and $\mathbb C.$

Define

$$\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$$

with addition and multiplication defined as in $\mathbb{C}.$

Indeed $\mathbb{Q}(i)$ is a subring of \mathbb{C} .

The question is whether this is a field, but this isn't too difficult.

Let a + bi be a non-zero element which means at least one of a or b are non-zero.

$$\frac{1}{a+bi} = \frac{1}{a+bi} \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$$

In $\frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$ since a, b are not both zero then $a^2 + b^2 > 0$ so the above element is still in $\mathbb{Q}(i)$, i.e. $\frac{1}{a+bi} \in \mathbb{Q}(i)$.

Recall $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$ which we saw is a field.

Here is a similar example:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$

where again, a non-zero element is one of the form $a + b\sqrt{2}$ where a and b are not both zero.

We again look to see whether the reciprocal is also a member of $\mathbb{Q}(\sqrt{2})$.

The argument is similar to the one used above using the 'conjugate radical':

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \frac{a-b\sqrt{2}}{a-b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2}$$
$$= \frac{a}{a^2-2b^2} + \frac{-b}{a^2-2b^2}\sqrt{2}$$

and we finish by realizing that $\frac{a}{a^2-2b^2}$, $\frac{b}{a^2-2b^2}$ are in \mathbb{Q} in particular that $a^2 - 2b^2 \neq 0$. Why?

For $a, b \in \mathbb{Q}$ suppose that $a^2 - 2b^2 = 0$ which means $a^2 = 2b^2$

If a = 0 then $a^2 = 2b^2$ implies b = 0 which is impossible.

If b = 0 then $a^2 = 2b^2$ implies a = 0 which is also impossible.

If $a \neq 0$ and $b \neq 0$ then $a^2 = 2b^2$ implies $\frac{a^2}{b^2} = \left(\frac{a}{b}\right)^2 = 2$ but $\frac{a}{b} \in \mathbb{Q}$ which is impossible since $\sqrt{2} \notin \mathbb{Q}$.

Note: If $\sqrt{2} = \frac{a}{b}$ where gcd(a, b) = 1 then $2b^2 = a^2$ which means a = 2c so $2b^2 = 4c^2$, so $b^2 = 2c^2$ so b = 2d, this means gcd(a, b) > 1. This was the argument used by Euclid to prove $\sqrt{2}$ is irrational. Now, we already know that for each prime p that \mathbb{Z}_p is a commutative ring with unity, and that since $U(\mathbb{Z}_p) = \mathbb{Z}_p - \{0\}$ it is a field.

However, there is another nice way to demonstrate this is the case, and also helps us demonstrate that other such finite rings are fields. This is a consequence of the following neat theorem.

Theorem (Wedderburn)

A finite integral domain is a field.

Proof.

Let $D = \{0, d_1, d_2, \dots, d_n\}$ be a finite domain, and assume that $d_1 = 1$ (the unity element). Pick any non-zero $d_i \in D$ consider $d_i d_1, d_i d_2, \dots, d_i d_n$ and suppose $d_i d_j = d_i d_k$ then $d_i (d_j - d_k) = 0$. But since D is a domain and $d_i \neq 0$ then $(d_j - d_k) = 0$ which means $d_j = d_k$. Moreover, no $d_i d_j = 0$ (again since D is a domain) and so $d_i d_1, d_i d_2, \dots, d_i d_n$ is a rearrangement of d_1, d_2, \dots, d_n which means one of the $d_i d_j = 1$ ergo $d_i^{-1} = d_j$. As such D must be a field. And since we've shown that \mathbb{Z}_n is a domain when *n* is a prime, we have:

Corollary

For any prime p, \mathbb{Z}_p is a field.