MA542 Lecture

Timothy Kohl

Boston University

January 31, 2025

Beyond \mathbb{Z}_p there are many other finite fields.

Consider this example: $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3 \ i^2 = -1 = 2\}.$

The construction mirrors that of $\mathbb C$ from $\mathbb R$ but this example is a finite ring.

Indeed we can list out the elements explicitly:

$$\{0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i\}$$

so that $|\mathbb{Z}_3[i]| = 9$ which is not unexpected if we view it as the set of \mathbb{Z}_3 -linear combinations of the 'basis' $\{1, i\}$.

This is analogous to how \mathbb{C} is the \mathbb{R} -vector space with basis $\{1, i\}$.

The thing to check though is that this is a ring (easy) and that it is commutative (also easy) and that it is a domain. (not quite so easy)

$$(a+bi)(x+yi) = (ax-by) + (ay+bx)i = (ax+2by) + (ay+bx)i = 0 + 0i$$

then we can write this as a matrix equation $A\vec{x} = \vec{0}$ namely

$$\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and since $a, b \in \mathbb{Z}_3$ is a field, this has a unique solution (i.e. x = 0, y = 0) if $det(A) = a^2 - 2b^2 \neq 0$ but this is easy to check since if $a^2 - 2b^2 = 0$ then $a^2 = 2b^2$.

So
$$a = 0$$
 if and only if $b = 0$, and if $a \neq 0$ then $b \neq 0$ then $\left(\frac{a}{b}\right)^2 = 2$.

However, this means there is some number $r \in \mathbb{Z}_3$ such that $r^2 = 2$, i.e. $r^2 = -1$ but $0^2 = 0$, $1^2 = 1$ and $2^2 = 4 = 1$.

So $\mathbb{Z}_3[i]$ is a domain and thus a field.

An interesting (and natural) question is whether we can repeat this construction with \mathbb{Z}_5 replacing \mathbb{Z}_3 , i.e.

$$\mathbb{Z}_{5}[i] = \{a + bi \mid a, b \in \mathbb{Z}_{5} ; i^{2} = -1 = 4\}$$

with the addition and multiplication defined in the way we did for $\mathbb{Z}_3[i]$.

Well, this ring is well defined, and is commutative, but... it is not a domain and therefore not a field.

As it turns out, $\mathbb{Z}_p[i]$ is a field (with p^2 elements!) only when $p \equiv 3 \pmod{4}$, which is equivalent to the equation $x^2 + 1 = 0$ **not** having a solution in \mathbb{Z}_p .

Note: In $\mathbb{Z}_3[i]$ one has

$$3(a + bi) = (a + bi) + (a + bi) + (a + bi) = (3a) + (3b) = 0 + 0i$$

for any $a, b \in \mathbb{Z}_3$ which is an example of the following idea, whose definiton may seem a bit confusing at first.

Recall that in *any* ring *R* (with unity), 0x = 0 and 1x = x for every $x \in R$ and for any positive integer *n* we can define $nx = x + x + \cdots + x$ (i.e. *x* added to itself *n* times).

Indeed, when we write nx the 'n' is a natural number, but can we regard 'n' as an element of the ring R?

Yes, in that if $1 \in R$ is our unity element then we can define $n \in R$ as

 $1+1+\cdots+1$

namely 1 added to itself n times, which is guaranteed to be an element of R,

e.g. in $M_2(\mathbb{Z})$:

$$nI = n \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \dots + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} n & 0 \\ 0 & n \end{bmatrix}$$

So in
$$M_2(\mathbb{Z})$$
, 'n' means $\begin{bmatrix} n & 0 \\ 0 & n \end{bmatrix}$

But for the definition we are about to give, we actually are more interested in $nx = x + x + \cdots + x$.

Definition

Let R be a ring, then if for some fixed n > 0 one has that nx = 0 for any $x \in R$ (but for no smaller non-zero n) we say that R has <u>characteristic</u> n, and we write char(R) = n.

If there is no such n > 0, i.e. nx = 0 for all $x \in R$ means n = 0 then we say that R has characteristic 0 and we write char(R) = 0.

Examples:

 $char(\mathbb{Z}) = 0$

 $char(\mathbb{R}) = 0$

 $char(\mathbb{Z}_n) = n$

 $char(\mathbb{Z}_3[i]) = 3$

 $char(\mathbb{Z}_3 \times \mathbb{Z}_2) = ? 6$

How about $char(\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_3)$ for example?

A simple way to determine the characteristic is to look at the unity element 1.

Proposition

Let R be a ring with unity 1. If $\langle 1 \rangle$ (cyclic group under addition) has infinite order then char(R) = 0. If $|\langle 1 \rangle| = n$ then char(R) = n.

And based on our discussion earlier, it's not hard to demonstrate the following.

Proposition

The characteristic of an integral domain is either 0 or a prime.