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Quotient/Factor Rings

For a ring R with ideal I ⊆ R we considered the cosets a+ I for a ∈ R and
observed that, similar to what one sees in group theory, there is an
algebraic structure to be placed on the set of cosets.

We are interested in whether the collection of cosets {r + I} has the
structure of a ring.

We know that, R is an abelian group under addition, and that since I ⊆ R

is an ideal it is a subgroup and that it is a normal subgroup of the abelian
group (R ,+) which means that R/I is well defined as an abelian group.
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Theorem

For R a ring with unity and I ⊆ R an ideal, the set of cosets R/I is a ring

where (r + I ) + (s + I ) = (r + s) + I and (r + I )(s + I ) = (rs) + I .

Moreover the additive identity is 0 + I and R/I has unity element 1 + I for

1 the unity element of R.

PROOF: Basic group theory gives us part of the structure already in that
since I is an ideal, it is automatically a normal subgroup of R with respect
to addition (since any subgroup of an abelian group is normal) and so the
addition of cosets is well defined.

That is, if r + I = r ′ + I and s + I = s ′ + I then
(r + I ) + (s + I ) = (r ′ + I ) + (s ′ + I ) and that 0+ I is the additive identity.

What remains to be shown is that R/I has a multiplicative structure as
stated.
We shall see that the ideal property of I (and not just that it is a subring)
is what makes this work.
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PROOF (continued) The definition (r + I )(s + I ) = (rs) + I is
straightforward, but it is a matter of verifying that the definition does not
depend on the choice of coset representative.

So say r + I = r ′ + I and s + I = s ′ + I then the question is whether
rs + I = r ′s ′ + I , namely that rs − r ′s ′ ∈ I .

Well r + I = r ′ + I , and s + I = s ′ + I means that r ′ = r + a and
s ′ = s + b for a, b ∈ I which means

r ′s ′ − rs = (r + a)(s + b)− rs = rs + rb + as + ab − rs = rb + as + ab

and since b ∈ I , rb ∈ I and a ∈ I implies as ∈ I and certainly ab ∈ I

(think!) and so rb + as + ab ∈ I , namely rs − r ′s ′ ∈ I .
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PROOF (continued) As to things like the associativity of coset
multiplication, and the distributive law holding in R/I , namely that

(r + I )[(s + I ) + (t + I )] = (r + I )(s + I ) + (r + I )(t + I )

these are straightforward exercises, as is the proof that 1 + I is the
multiplicative identity of R/I .
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When one is asked to ’determine’ the structure of R/I , this starts with the
enumeration of the distinct cosets in R/I .

One of the key facts to bear in mind is (like one learns in group theory)
the cosets in R/I represent a partition of R .
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Examples of Quotient Rings

Basic: R = Z, I = nZ for some n > 1.

Since r + nZ = s + nZ iff r − s ∈ nZ (i.e. r − s = nk for some k) then
r + nZ = s + nZ iff r ≡ s(mod n).

Ergo, the distinct cosets (elements!) of Z/nZ are

{0 + nZ, 1 + nZ, . . . , (n − 1) + nZ}

since for every integer x ∈ Z

x + nZ = r + nZ

for exactly one r ∈ {0, 1, . . . , n − 1} by the division algorithm.
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Z/nZ continued

Moreover, one can see that

(a + nZ) + (b + nZ) = (a + b) + nZ = r + nZ

where r is the remainder when a + b is divided by n.

e.g. In Z/5Z,

(3 + 5Z) + (4 + 5Z) = 7 + 5Z = 2 + 5Z

since 7 = 1 · 5 + 2.
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And similarly for multiplication

(3 + 5Z)(2 + 5Z) = 6 + 5Z = 1 + 5Z

Moreover, it’s quite clear that we have an isomorphism Z/nZ ∼= Zn which
is given by the function φ : Z/nZ → Zn where φ(r + nZ) = r .

It’s easy to verify that this is a homomorphism, and that it is one-to-one
and onto. (Exercise.)
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Here is a familiar example, whose analysis begins with the enumeration of
the distinct cosets in R/I .

Here R = Z[x ] and I = 〈x〉 and we begin by realizing that

I = 〈x〉

= {xf (x) | f (x) ∈ R}

= {h(x) ∈ R | h(0) = 0}

= {cnx
n + cn−1x

n−1 + · · ·+ c1x | ci ∈ Z}

and it is the last characterization of I that is the key, namely the set of
polynomials whose constant term is 0.
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So what are the distinct cosets in R/I?

Well, f (x) + I = g(x) + I iff f (x) − g(x) ∈ I which means that for
h(x) = f (x)− g(x) one has h(0) = 0, but this means the constant term of
f (x) − g(x) is zero, which means that if

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x + b0

then f (x) + I = g(x) + I iff a0 = b0.
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What this also implies is that if f (x) = anx
n + an−1x

n−1 + · · · + a1x + a0
and g(x) = a0 (i.e. a constant polynomial) then

f (x) + I = g(x) + I

or more succinctly for any polynomial f (x) one has f (x) + I = f (0) + I .
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Moreover, if one has two constant polynomials ’a’ and ’b’ then
a + I = b + I iff a − b ∈ I iff a = b!

The conclusion is that the distinct cosets in R/I are {a + I | a ∈ Z}.

So what is the ring structure of R/I ?
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Since the distinct cosets are {a + I | a ∈ Z} then the ring structure is
given by

(a + I ) + (b + I ) = (a + b) + I

(a + I )(b + I ) = (ab) + I

where 0 + I is the additive identity and 1 + I is the multiplicative identity
(unity) element.

And so one can define a map φ : Z → R/I given by φ(a) = a+ I which we
can verify is not only a homomorphism, but also one-to-one and onto, and
thus R/I ∼= Z.
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One of the ways to ’interpret’ the quotient construction is that it
’collapses’ or ’condenses’ the ring.

In the first example, Z/nZ all the elements with the same remainder are
aggregated together in the same coset, resulting in a quotient ring which is
finite.

In contrast, in Z[x ]/〈x〉 it’s almost as if were making all occurrences of ’x ’
in a given polynomial equal to zero.

Indeed, this is consistent with our observation that for a polynomial
f (x) ∈ Z[x ] one has that

f (x) + 〈x〉 = f (0) + 〈x〉

where for f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 one has f (0) = a0 of
course.

Timothy Kohl (Boston University) MA542 Lecture February 14, 2025 15 / 16



The other point to note is that Z[x ]/〈x〉 is infinite, so that shows that a
the quotient of an infinite ring may or may not be infinite.

Note also, that we can repeat the argument we used to deduce the
structure of Z[x ]/〈x〉 to show that for any commutative ring A, one has
that A[x ] is a ring, and that 〈x〉 ⊆ A[x ] is an ideal and that

A[x ]/〈x〉 ∼= A

for the exact same reason, namely that f (x) + 〈x〉 = f (0) + 〈x〉.
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