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So what we’ve just demonstrated is that the kernel of any homomorphism
is an ideal, but, in fact, the converse is true in a ’canonical’ way.

Proposition

If I ⊆ R is an ideal then the function π : R → R/I given by π(r) = r + I is

a homomorphism, and Ker(π) = I .

Proof.

First, π(r1 + r2) = (r1 + r2) + I = (r1 + I ) + (r2 + I ) = π(r1) + π(r2) and
similarly π(r1r2) = π(r1)π(r2).

Next, Ker(π) = {x ∈ R | x + I = 0+ I} but x + I = 0 + I means x ∈ I so
Ker(π) = I .
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We used the term ’First’ for the isomorphism theorem mentioned above,
which suggests that there are others, and indeed there are.

But first we need to make some observations about ideals.

Proposition

If I , J are ideals of R then I ∩ J is an ideal, as is

I + J = {i + j | i ∈ I ; j ∈ J}

Proof.

That I ∩ J is an ideal is not difficult and is left as an exercise. The set
I + J is a subring since (i1 + j1)− (i2 + j2) = (i1 − i2) + (j1 − j2) ∈ I + J

and if we multiply we get (i1 + j1)(i2 + j2) = i1i2 + i1j2 + i2j1 + j1j2 where
now, by virtue of I , J both being ideals of R means that i1i2 ∈ I , i1j2 ∈ I

and i2j1 ∈ J and j1j2 ∈ J so this sum is in I + J so the product is too.
That I + J is an ideal is straightforward.
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Theorem (Second Isomorphism Theorem for Rings)

Let I and J be ideals of R, then (I + J)/J ∼= I/(I ∩ J).

PROOF:
First, let’s observe the obvious fact that J ⊆ I + J and the less obvious
fact that J is an ideal of I + J. (It’s clearly a subring, and if
(x + y) ∈ I + J then for j ∈ J we have (x + y)j = xj + yj which is in J

because J is an ideal of R , and R contains I + J of course.

This is a bit unintuitive, but we can verify it by looking at the function
θ : I → (I + J)/J given by θ(i) = i + J.
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This is readily seen to be a homomorphism. The subtle fact to show is
that θ is onto.

If we look at (I + J)/J, a typical element is of the form i + j + J where
i ∈ I and j ∈ J.

But j ∈ J so j + J = J which means i + j + J = i + J, so θ is indeed onto.
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PROOF continued:
To finish, let’s determine Ker(θ).

Note i + J = J if and only if i ∈ J, but since i + J ∈ I + J then this means
i ∈ I of course, so i ∈ I ∩ J, so Ker(θ) = I ∩ J and thus, by the first
isomorphism theorem:

I/I ∩ J ∼= (I + J)/J

since θ is onto and Ker(θ) = I ∩ J.
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We round out this discussion with one more ’major’ theorem involving ring
isomorphisms which we state, but will leave the proof as an exercise.

Theorem (Third Isomorphism Theorem for Rings)

If R is a ring and I , J are ideals with I ⊆ J then J/I is an ideal of R/I and
(R/I )/(J/I ) ∼= R/J.

We now return to quotient calculations, in particular one which points to a
definition for certain classes of ideals in a ring.
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Prime vs. Maximal Ideals

Let R = Q[x ] and I = 〈x2 − 2〉, what is R/I?

First, we need to enumerate the distinct cosets, and we have that

f (x) + I = g(x) + I

if and only if f (x)− g(x) is a multiple of x2 − 2 since I = 〈x2 − 2〉.

This doesn’t seem like a terribly useful fact at the moment.

What is more useful is that x2 − 2+ I = 0+ I which means x2 + I = 2+ I .
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So we have x2 + I = 2 + I which (if we multiply both sides by x + I )
implies

x3 + I = 2x + I

and similarly x4 + I = 2x2 + I , and since x2 + I = 2 + I then
2x2 + I = 4+ I , and so x4 + I = 4+ I , which implies that x5 + I = 4x + I

etc.

So the general pattern we observe is that

x2n + I = 2n + I

x2n+1 + I = 2nx + I

so, for example, ax2 + bx + c + I = (2a + c) + bx + I and
ax3 + bx2 + cx + d + I = (2b + d) + (2a + c)x + I .
(You may wonder why we write it in the form c + dx instead of dx + c ,
we’ll see why later.)
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And so for every f (x) ∈ Q[x ] we have f (x) + I = (a + bx) + I for some
a, b ∈ Q.

Moreover, if (a1 + b1x) + I = (a2 + b2x) + I then
(a1 − a2) + (b1 − b2)x ∈ I which means

x2 − 2 | (a1 − a2) + (b1 − b2)x

which, (unless a1 − a2 = 0 and b1 − b2 = 0) is impossible because
deg(x2 − 2) = 2.
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Thus the distinct cosets in Q[x ]/I are

{(a + bx) + I | a, b ∈ Q}

where

[(a + bx) + I ] + [(c + dx) + I ] = (a + c) + (b + d)x + I

and x2 = 2 implies that

[(a + bx) + I ][(c + dx) + I ] = (ac + 2bd) + (ad + bc)x + I
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If you look at the rule (x + I )(x + I ) = x2 + I = 2 + I it’s almost as if
x + I plays the role of

√
2.

This is not an accident, and indeed, what we have is that

Q[x ]/〈x2 − 2〉 ∼= Q(
√
2) = {a + b

√
2 | a, b,∈ Q}

under the mapping (a + bx) + I 7→ a + b
√
2.

And we have already observed that Q(
√
2) is a field, and so we have

another example of a quotient ring which is field, but in this case, an
infinite field.
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What we also see about this example is the relationship between the ideal
〈x2 − 2〉 and the field Q(

√
2) which the quotient ring Q[x ]/〈x2 − 2〉 is

isomorphic to.

If you look at the equation x2 − 2 = 0 then this has no solutions in Q
since

√
2 6∈ Q but

√
2 is in Q(

√
2).

So it’s almost as if we can ’make’ a field which contains the root of an
equation where that root is not already in Q.

As an example to contemplate, what is the structure of Q[x ]/〈x2 + 1〉?
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We just saw that Q[x ]/〈x2 − 2〉 is isomorphic to the field Q(
√
2).

In contrast, if we construct the quotient ring Z[x ]/〈x2 − 2〉 we have that
this is isomorphic to the integral domain Z[

√
2] = {a + b

√
2 | a, b ∈ Z}.

And we note that Z[
√
2] is not a field, since, for example

1

2 +
√
2
=

1

2
− 1

2

√
2 6∈ Z[

√
2]

but it is a domain. (Exercise!).

So the question is, why is one of these a field, but the other just a domain?
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Definition

A prime ideal I of a commutative ring R is a proper ideal such that

ab ∈ I implies that either a ∈ I or b ∈ I

A maximal ideal I of a commutative ring R is a proper ideal such that if
there is another ideal J such that I ⊆ J ⊆ R then either I = J or J = R .

So how do we determine if a given ideal is prime or maximal?
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For example, in R = Z the ideal I = nZ is prime if and only if n is a prime
number.

Why? Well if ab ∈ nZ then n | ab but this need not imply that n | a or
n | b, for example 8 · 3 ∈ 12Z but 12 ∤ 8 and 12 ∤ 3.

However, for n = p a prime, p | ab implies that either p | a and/or p | b.
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Note: All ideals of Z are of the form I = nZ for some n.

Why? Well if I is an ideal, then let n be the smallest non-zero positive
number in I . (This exists due to the well ordering principle.)

If x ∈ I then by the division algorithm x = qn + r for some
r ∈ {0, 1, . . . , n − 1}.

If r = 0 then x = qn and is a multiple of n.

If r 6= 0 then, since x ∈ I (by assumption) and qn ∈ I (since I is an ideal)
then x − qn ∈ I , but x − qn = r where r < n which contradicts the choice
of n as being the smallest positive number in I .

So every element x ∈ I is of the form x = qn so I = 〈n〉.
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