
MA542 Lecture

Timothy Kohl

Boston University

February 24, 2025

Timothy Kohl (Boston University) MA542 Lecture February 24, 2025 1 / 17



Divisibility in Integral Domains

What is the connection between the concept of ’prime’ (as in Z) vs.
’irreducible’ (as in F [x ]) in a domain?

We need to give some formal definitions.

Definition

Let D be an integral domain.
Elements a, b of D are associates if a = ub for u ∈ U(D).

A non-zero element a ∈ D is prime if a is not a unit, and a | bc implies
a | b or a | c .

A non-zero element a ∈ D is irreducible if a is a non-unit, and if a = bc

for b, c ∈ D, then either b or c are units.
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One might see that the definition of irreducible seems to match up with
the usual definition of ’prime number’, namely:

Definition

An natural number p is prime if it is only divisible by itself and 1.

i.e. it cannot be factored p = ab for integers a > 1 and b > 1.

Timothy Kohl (Boston University) MA542 Lecture February 24, 2025 3 / 17



However, a prime number does satisfy the primality definition we just gave
in that if p | ab then either p | a and/or p | b.

And, although this may be a confusing thing to note at this point, it seems
as if, for integers at least, prime and irreducible are the same thing.

This is true in Z, but for general integral domains, we want to look at
these definitions separately since, in other domains, they are not equivalent
notions.
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We begin with a relationship that does hold between primes and
irreducibles.

Theorem

In an integral domain D, every prime is irreducible.

Proof.

Let p ∈ D be a prime and suppose p = ab for a, b non-units.
Since p = ab then obviously p | ab so either p | a or p | b, so suppose
a = cp.

Thus p = cpb and since D is a domain we can ’cancel’ the common factor
of p from both sides to get 1 = cb which implies that b is a unit,which is a
contradiction.

Thus p is irreducible.
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So in a domain PRIME −→ IRREDUCIBLE so it begs the question, are
there irreducible elements in a domain which aren’t prime?

The answer is YES.
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The reason that these definitions are distinct has to do with the nature of
the units in the domain.

Consider the ring Z[
√
d ] = {a + b

√
d} where d 6= 1 is an integer which is

not divisible by the square of any integer, what we term ’square free’, e.g.
d = −1, 2, 3, 5, 6, . . . , etc.

Define the norm N : Z[
√
d ] → Z

+ (non-negative integers) by

N(a + b
√
d) = |a2 − db2|

which has several important properties which make it almost like a
homomorphism.
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Properties of N(a + b
√
d) = |a2 − db2|

N(x) = 0 iff x = 0

N(xy) = N(x)N(y)

N(x) = 1 iff x is a unit of Z[
√
d ].

These aren’t too difficult to verify.

For example if x = a + b
√
d then N(x) = |a2 − db2| so N(x) = 0 implies

that a2 = db2, namely that

(

a

b

)2

= d .

But this implies that a

b
= ±

√
d which is impossible since a, b ∈ Z and

√
d

is irrational. (Why?)
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That N(xy) = N(x)N(y) is a pure calculation, to wit:

(a + b
√
d)(A + B

√
d) = (aA+ dbB) + (aB + Ab)

√
d

and

(aA+ dbB)2 − d(aB + Ab)2 = a2A2 + d2b2B2 − da2B2 − dA2b2

while (a2 − db2)(A2 − dB2) = a2A2 + d2b2B2 − da2B2 − dA2b2

a tedious but straightforward verification.
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And N(a + b
√
d) = 1 implies that a2 − db2 = ±1 so if you look at 1

a+b
√

d

you see that it equals

a

a2 − db2
+

−b

a2 − db2

√
d

which is an element of Z[
√
d ] only if a

a2−db2
∈ Z and −b

a2−db2
∈ Z, which

means the denominator a2 − db2 must be ±1, i.e. N(a + b
√
d) = 1.
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Indeed,
U(Z[

√
d ]) = {a + b

√
d | |a2 − db2| = 1}

and it’s interesting to see how the choice of d affects the size and
structure of this group.

For example, when d = −1 we get the Gaussian integers whose only units
are {±1,±i}.

But for d = 2 it turns out that the units are of the form

{±(1 +
√
2)n} ∼= Z2 × Z

specifically 〈−1〉 × 〈(1 +
√
2)〉.

For those interested in this subject in general, Dirichlet’s Unit theorem
describes these unit groups in terms of a ’torsion’ component (i.e. finite),
and a ’free’ component, namely a product of a certain number of copies of
Z.
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We now demonstrate the existence of an irreducible which is not a prime.

Consider D = Z[
√
−3] where N(a + b

√
−3) = |a2 + 3b2| = a2 + 3b2.

Observe that N(1 +
√
−3) = 4 and suppose 1 +

√
−3 = xy for some

x , y ∈ D which aren’t units, then N(1 +
√
−3) = N(xy) = N(x)N(y)

where N(x) 6= 1 and N(y) 6= 1.
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Since N(x),N(y) are positive integers, (both greater than 1) then it must
be the case that N(x) = 2 and N(y) = 2.

However, if x = a + b
√
−3 then N(x) = a2 + 3b2 and since a and b are

not both zero then it is impossible for N(x) = 2.

As such 1 +
√
−3 = xy for x , y non-units is impossible, so 1 +

√
−3 is

irreducible.
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So now, let’s observe that (1 +
√
−3)(1−

√
−3) = 4 = 2 · 2 which means

that
(1 +

√
−3) | 2 · 2

so does (1 +
√
−3) | 2?

Well if 2 = (a + b
√
−3)(1 +

√
−3) = (a − 3b) + (a + b)

√
−3 then

a − 3b = 2 and a+ b = 0 which implies that 2b = 1 which is impossible
since b ∈ Z!

So what we’ve demonstrated is that 1 +
√
3 is an irreducible which is not

a prime.
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We still have the case of Z where prime and irreducible mean the same
thing, so when does this occur?

Definition

An integral domain R is a principal ideal domain (PID) if for every ideal
I ⊆ R , there is an a ∈ R such that I = 〈a〉.

There are two fundamental examples, which we’ve already encountered.
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We already proved that Z is PID by using the division algorithm to show
every member of an ideal I ⊆ Z is a multiple of a fixed positive integer.

What’s nice about this example is that the proof of it (i.e. the use of the
division algorithm) also implies that F [x ] is a PID for F a field.

Basically, if I ⊆ F [x ] is an ideal, then let f (x) be a polynomial of minimal
degree in I , then for any g(x) ∈ I one can write g(x) = q(x)f (x) + r(x)
where r(x) = 0 (meaning f (x) | g(x)) or deg(r(x)) < deg(f (x)).

But then r(x) ∈ I too, so if r(x) 6= 0 then we have a contradiction of the
fact that deg(f (x)) is the smallest degree of any polynomial in I !
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There are other examples of PID’s we can mention now, some of which
will be proven to be so later on.

F [[x ]] - the ring of ’formal power series’ under addition and
multiplication where F is a field

Z[i ]

Z[
√
2]

Z[ζ] = {a + bζ | a, b ∈ Z} where ζ = e
2πi

3 , namely a complex cube
root of unity

The latter three examples, all use the norm idea developed earlier, but
there are some extra conditions needed.

A non-example to consider is Z[
√
−5], which we’ll discuss in a broader

context later on.
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