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We have the following.

Theorem

In a PID, every irreducible element is prime.

Proof.

Let a ∈ D (a PID) be irreducible and suppose a | bc for b, c ∈ D. We wish
to show that either a | b or a | c .
Let I = {ax + by | x , y ∈ D} which is an ideal of D, and so I = 〈d〉 for
some d ∈ D.
Since a ∈ I then a = dr for some r ∈ D but then either d or r is a unit
since a is irreducible.
If d is a unit then I = D and so 1 = ax + by for some x , y so
c = acx + bcy and since a | bc and a | ac then a | c .
If r is a unit then 〈a〉 = 〈d〉 = I and since b ∈ I then there is a t ∈ D such
that at = b i.e. a | b.
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Corollary

If D is a PID, then p ∈ D is a prime if and only if it is irreducible.

For example, in Z primes and irreducibles are indeed the same thing.

We also deduce this.

Corollary

If there exists an irreducible a ∈ D (a domain) that is not prime, then D is
not a PID.

So for example, Z[
√
−3] is not a PID, since 1 +

√
−3 is irreducible, but

not prime.
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Indeed, it is precisely those Z[
√
d ] which are PIDs for which prime and

irreducible are the same.

For example, the Gaussian integers Z[
√
−1] = Z[i ] is a PID.

We saw that F [x ] is PID, for example, Q[x ], so it begs the question of
whether Z[x ] is a PID?
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The answer is no, which can be demonstrated by the following
counterexample

I = {f (x) ∈ Z[x ] | f (0) is even}
is an ideal of Z[x ] which is not principal.

Why? Well if I = 〈h(x)〉 then since 2 ∈ I we would have to have h(x) | 2
which would mean that h(x) is constant polynomial.

But if h(x) is a constant polynomial then we would have to have h(x) = 2,
but then f (x) = x + 2 is in I but not in 〈2〉 since 2 ∤ x + 2.
Remember, the coefficients are integers.
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We note one last thing, even though Z[x ] is not a PID, it turns out that
irreducibles are primes in this ring.
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Unique Factorization

Definition

An integral domain D is a unique factorization domain (UFD) if
(1) every non-zero, non-unit of D can be written as a product of
irreducibles in D
(2) this factorization is unique, up to the order of the irreducibles, and to
associates.

So for a ∈ D is a non-zero, non-unit, and a = p1p2 · · · pr and
a = q1q2 · · · qs where the pi and qj are irreducibles, then r = s and
without loss of generality qi = uipi where ui ∈ U(D).
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We explored this earlier for the most fundamental example Z.

Now in Z the only units are ±1 so a given irreducible p, has only two
associates p and −p.

So for example, 12 can be written in a few different (but equivalent) ways

12 = 2 · 2 · 3
= 2 · (−2) · (−3)

= (−2) · (−2) · 3
= (−2) · 2 · (−3)
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The point is that if a = p1p2 · · · pr = (u1p1)(u2p2) · · · (urpr ) then

p1p2 · · · pr = (u1p1)(u2p2) · · · (urpr )
= (u1u2 · · · ur )(p1p2 · · · pr )
= 1(p1p2 · · · pr )

namely u1u2 · · · ur = 1.
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The fundamental example of a UFD is the integers Z of course and the
fact that Z is a UFD is a theorem called the Fundamental Theorem of
Arithmetic where the irreducibles are prime numbers.

Moreover, if we ignore the associates p and −p then every natural number
is uniquely expressible as a product of primes.

So how would one actually prove that a given domain is a UFD?
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As it turns out the answer to this, in part, depends on the ideals in the
domain, in particular principal ideals.

Lemma

If D is a domain then for any unit u ∈ U(D) we have 〈u〉 = D.

We’ve seen something similar to this earlier, but we include this here as it
is germane to the discussion of factoring.

Proof.

If u ∈ U(D) then for I = 〈u〉 we have that ru ∈ I for any r ∈ D, so in
particular for r = u−1 so that 1 ∈ I , and so d · 1 = d ∈ I for all d ∈ D so
D ⊆ I so D = I .
For the converse, if D = 〈u〉 then 1 = du for some d ∈ D but this means
that d ∈ U(D) and that u = d−1 which means u ∈ U(D) too of
course.
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Lemma

If D is a domain then a = ub for u ∈ U(D) iff 〈a〉 = 〈b〉.

Proof.

If a = ub and x ∈ 〈a〉 then x = ac = ubc = b(uc) ∈ 〈b〉 so 〈a〉 ⊆ 〈b〉.
If y ∈ 〈b〉 then y = bc but a = ub implies b = u−1a so
y = u−1ac = a(u−1c) which means y ∈ 〈a〉, i.e. 〈b〉 ⊆ 〈a〉 and thus
〈a〉 = 〈b〉.
For the converse, if 〈a〉 = 〈b〉 then a ∈ 〈b〉 so a = bc , and since b ∈ 〈a〉
then b = ad so a = adc and since D is a domain, we can cancel a from
both sides to yield 1 = dc so that d , c are units.
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Now, for a ’proper’ factorization, namely a = bc where b and c are
non-units of D, we have the following relationship between principal ideals.

Lemma

If D is a domain then a = cb where b, c are not units iff 〈a〉 ( 〈b〉

Proof.

Since a = cb then any multiple of a is a multiple of b which means x ∈ 〈a〉
implies x ∈ 〈b〉 so 〈a〉 ⊆ 〈b〉.
This inclusion is proper only if c is a non-unit by the previous lemma.
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Factorization centers around a basic question,what is the difference
between reducible and irreducible?

Well, recall that a non-zero, non-unit is irreducible if it cannot be written
as a product of other non-units.

And if it is reducible (factorable) then it can written as a product of at
least two other non-units.
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So start with a non-zero, non-unit a ∈ D where D is a domain.

If a is irreducible then we’re done.

Otherwise a = x1y where x1 and y are other non-units.

If x1 and y are irreducible then we’re done.
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Otherwise we have that, for example, x1 is reducible so we can write
x1 = x11x12 for non-units x11 and x12.

Thus a = x11x12y and if x11 is not irreducible we can write it as x111x112
for non-units x111 and x112.

And so we have:

a = x1y

= x11x12y

= x111x112x12y

and so we can keep ’drilling down’ and see if x111 is irreducible or not, and
if not, factor it as say x1111x1112 etc.

This can be viewed in the setting of ideals.
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If a = x1y where x1,y are non-units, then we saw earlier that this implies
〈a〉 ( 〈x1〉.

And if x1 = x11x12 (where x11 and x12 are non-units) then 〈x1〉 ( 〈x11〉.

And if x11 = x111x112 (for non-units x111 and x112) then 〈x11〉 ( 〈x111〉.
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Continuing this way, we have a chain of ideals:

〈a〉 ( 〈x1〉 ( 〈x11〉 ( 〈x111〉

corresponding to each factorization

a = x1y = x11x12y = x111x112x12y

and each time we factor one of the non-units into a product of two
non-units, we add another ideal to this chain.

The question is, does this process stop after a finite number of steps?
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