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Last time, we showed that if F is a perfect field then all irreducible
polynomials in F [x ] are separable.

Recall that F is a perfect field if char(F ) = 0 or, if char(F ) = p that
F p = F .

Perfect or not, we can say something quite general about the multiplicities
of roots of irreducible polynomials in F [x ].
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Theorem

Let f (x) be irreducible in F [x ] for F a field, and let E be a splitting field
for f (x) over F . Then all the zeros of f (x) in E have the same multiplicity.

PROOF:

If a and b are roots of f (x) in a splitting field E/F of f (x), then there is
an isomorphism ψ : F (a) → F (b), induced by ψ(a) = b and ψ(c) = c for
c ∈ F , so, in particular ψ(cn−1a

n−1 + · · · + c1a + c0) =
cn−1ψ(a

n−1)+ · · ·+ c1ψ(a)+ c0 = cn−1b
n−1+ · · ·+ c1b+ c0 where ci ∈ F .

So if a has multiplicity m then f (x) = (x − a)mg(x) ∈ E [x ] (where
g(a) 6= 0) and ψ(f (x)) = (x − ψ(a))mψ(g(x)) = (x − b)mψ(g(x)) which
means b has multiplicity at least m but if we exchange ’a’ and ’b’ then we
deduce that the multiplicity of a is greater than or equal to that of a as
well, so they’re the same.
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So we conclude that f (x) = c(x − a1)
m(x − a2)

m · · · (x − ar )
m for some

c ∈ F where a1, . . . , ar are the distinct roots of f (x).

We finish by considering a ’non-perfect’ field.

Consider Zp(t) = Frac(Zp[t]) which is the field of fractions where
numerator and denominator are polynomials in ’t’ with coefficients in Zp,
what we term a ’field of rational functions’.

What we find is that the function φ : Zp(t) → Zp(t) given
f (t)
g(t) 7→

f (t)p

g(t)p is
not onto.
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To see this, realize that φ(t) = tp which means t 6∈ φ(Zp(t)) since t is not
the pth power of any element of Zp(t).

Now f (x) = xp − t ∈ Zp(t)[x ] is an irreducible polynomial, basically since
Zp(t) does not contain t1/p.

So now, if s = t1/p then we can adjoin s to Zp(t) to obtain an extension
field and in this field (x − s)p = xp − sp = xp − t since the field has
characteristic p.

So we conclude that f (x) = xp − t is an irreducible polynomial that is not
separable.
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Algebraic Extensions

Definition

Let E be an extension field of F and let a ∈ E . We call a algebraic over F
if a is the zero of some non-zero polynomial in F [x ].

If ’a’ is not algebraic, then it is called transcendental.

An extension E of a field F is called algebraic if every element of E is
algebraic over F , otherwise E is a transcendental extension of F .

An extension of F of the form F (a) is called a simple extension.
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Examples:√
2 ∈ Q(

√
2) is algebraic over Q since

√
2 is a root of x2 − 2 ∈ Q[x ].

The field Q(
√
2) is algebraic, and we can show this by looking at a typical

element α = a + b
√
2.

If b = 0 then α = a ∈ Q which is root of x − a ∈ Q[x ] (indeed all the
elements of F are algebraic over F for any field).

If b 6= 0 then consider α− a = b
√
2 so (α− a)2 = 2b2 so α is a root of

f (x) = x2 − 2ax + (a2 − 2b) ∈ Q[x ].

In contrast, π is transcendental over Q, as was proved by Lindemann in
1882.

Similarly e is also known to be transcendental, as was proved by Hermite
in 1873.
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As is turns out, it’s rather difficult to prove a number is transcendental.

Another famous example is the so-called Liouville constant:

L =
∞
∑

n=1

10−n! = 10−1 + 10−2 + 10−6 + · · · = 0.110001000...

where a given digit is 1 if its ’place’ is n! for some n ≥ 1.

For perspective, we can consider the fact that the set of all real numbers
which are alebraic over Q, namely the roots of any polynomial in Q[x ] is a
countable set since there are only countably many polynomials in Q[x ],
each of which has only finitely many roots.

The difference of these two sets is uncountable, meaning that most real
numbers are transcendental but the subtlety is in actually proving a given
real number is transcendental.
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If we take a transcendental number like say π then Q(π) contains all
possible Q-linear combinations of powers of π, i.e f (π) where f (x) ∈ Q[x ].

The key difference between Q(
√
2) and Q(π) is that π is not the root of a

polynomial, unlike
√
2, and the difference is that Q(π) is not a finite

dimensional vector space over Q.

(i.e.
√
2 being a root of x2 − 2 means all elements of Q(

√
2) are of the

form a + b
√
2, but the same is not true for Q(π))

Indeed Q(π) =
{ f (π)
g(π) | f (x), g(x) ∈ Q[x ], g(x) 6= 0

}

namely all rational
functions with π substituted in for x .
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For any field F , we have F (t) = Frac(F [t]) which is the field of rational
functions in one variable ’t’ with coefficients in F .

We see that F (t) is a transcendental extension of F since there is no
polynomial f (x) ∈ F [x ] such that f (t) = 0.

Theorem

For a field F , and a a transcendental element over F we have that
F (a) ∼= F (t).
If α is algebraic over F then F (α) ∼= F [x ]/〈p(x)〉 for an irreducible
polynomial p(x) ∈ F [x ] of minimal degree for which p(α) = 0.
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We examine the second claim above.

If α is algebraic over F then consider

I = {f (x) ∈ F [x ] | f (α) = 0}

and observe that f (x), g(x) ∈ I implies f (x) + g(x) ∈ I too since
f (α) + g(α) = 0 + 0 = 0 and if h(x) ∈ F [x ] and f (x) ∈ I then for
f (x)h(x) we have f (α)h(α) = 0h(α) = 0 so h(x)f (x) ∈ I , that is, I is an
ideal.

And being an ideal in F [x ], it is principal so it means that I = 〈p(x)〉 for
some p(x) ∈ F [x ], and moreover since the degrees of elements in I are
natural numbers, the degree of p(x) is the minimal degree of the degrees
of all the elements of I .

It follows that p(x) must be irreducible. Why?
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Define ψ : F [x ]/I → F (α) by h(x) + I 7→ h(α) and if
h1(x) + I = h2(x) + I then h1(x)− h2(x) ∈ I and so h1(α) − h2(α) = 0
which means h1(α) = h2(α) so ψ is well defined, and a homomorphism.

It is clear that ψ is onto since every element of F (α) is of the form h(α)
for some h(x) ∈ F [x ] and as we saw above h1(α) = h2(α) implies
h1(x) + I = h2(x) + I so ψ is one-to-one and so F [x ]/I ∼= F (α) which
means that I is a maximal ideal.

As such, for that p(x) such that I = 〈p(x)〉 we must have that p(x) is
irreducible.

The reason is that if q(x) | p(x) (where deg(q(x)) < deg(p(x)) then
〈p(x)〉 ( 〈q(x)〉 but since 〈p(x)〉 is maximal this means 〈q(x)〉 = F [x ] so
that q(x) is a non-zero constant (i.e. a unit).
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We have the following somewhat refined version of the above result.

Theorem

If α is algebraic over F then there is a unique monic (leading term 1)
irreducible polynomial p(x) ∈ F [x ] such that p(α) = 0.

The ideal I of polynomials in F [x ] which have α as a root are generated by
an irreducible polynomial, i.e. I = 〈p(x)〉.

And any other polynomial which generates this ideal is a unit multiple of
p(x), so if p(x) = anx

n + · · · + a1x + a0 then
up(x) = uanx

n + uan−1x
n−1 + · · ·+ ua1 + ua0 and so up(x) is monic only

if u = a−1
n i.e. it’s unique.

We call this unique monic irreducible polynomial the minimal polynomial
of α over F and denote it irr(α,F ).
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The assumptions we will make about the fields under study make the
following definitions from the text somewhat moot, be we include them
nonetheless.

Definition

For a field F , an extension field E/F is called a separable extension if for
every α ∈ E , one has that irr(α,F ) is a separable polynomial.
An extension E/F is a normal extension if E is a separable splitting field
of some polynomial in F [x ].

These definitions are made if one makes no assumptions about the base
field F .
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However, if F is perfect (which we shall usually assume) then any
extension field E/F is automatically separable.

And as to normal extensions, again assuming the base field F is perfect,
then ’normal extension’ is equivalent to ’splitting field’.

And indeed, we shall have good reasons for distinguishing between
splitting fields/extensions, such as Q(

√
2)/Q, versus those which aren’t

such as Q( 3
√
2)/Q.
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Here are some basic examples of irr(α,Q).

α =
√
2 implies irr(α,Q) = x2 − 2

α = i implies irr(α,Q) = x2 + 1

α = 3
√
2 implies irr(α,Q) = x3 − 2

These are relatively obvious, but what about more complicated examples?

We’ll consider these next time, as the problem is in proving that the
polynomial you find is actually irreducible.
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