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It’s an interesting exercise to compute irr(α,F ) for a given α.

For example, let α =
√
2 +

√
3, what is irr(α,Q)?

If we start by squaring α we get

α2 = 2 + 2
√
2
√
3 + 3

= 5 + 2
√
6

and so α2 − 5 = 2
√
6 so (α2 − 5)2 = 24 so that α4 − 10α2 + 25 = 24 and

so α4 − 10α2 + 1 = 0 so α is a root of f (x) = x4 − 10x2 + 1

As it turns out, this is irr(α,Q) but the difficulty is in proving that
x4 − 10x2 + 1 is irreducible in Q[x ], but we shall find a nice, slightly
indirect, way of proving it is, by using the idea of the dimension of an
algebraic extension like Q(α) over Q.
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So for α an algebraic element over F we have that

{f (x) ∈ F [x ] | f (α) = 0} = 〈irr(α,F )〉

and therefore
F (α) ∼= F [x ]/〈irr(α,F )〉

where, if deg(irr(α,F )) = n means that

F (α) = {cn−1α
n−1 + · · ·+ c1α+ c0 | ci ∈ F}

meaning that dimF (F (α)) = n, in that F (α) is an F -vector space with
basis

{1, α, . . . , αn−1}
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Let’s explore the dimension idea a bit more.

Definition

Let E be an extension field of F . We say that E has degree n over F , and
write [E : F ] = n if E has dimension n when viewed as a vector space over
F .
If [E : F ] is finite then we call E a finite extension of F , otherwise E is an
infinite extension.

and sometimes we indicate the degree in a diagram like this:

E

n

F
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For example

[Q(i) : Q] = 2

[C : R] = 2

[Q( 3
√
2) : Q] = 3

[Q(π) : Q] is infinite

and in general, if α is algebraic over F and deg(irr(α,F )) = n then
[F (α) : F ] = n.

Also, comparing this to the last example in the list, [Q(π) : Q], above
points to an interesting and important fact about algebraic extensions.
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We showed that if α =
√
3 +

√
2 then f (α) = 0 for f (x) = x4 − 10x2 + 1.

And since irr(α,Q) generates the ideal of all polynomials with α as a root,
we must have irr(α,Q)|x4 − 10x2 + 1.

So the question is whether irr(α,Q) = x4 − 10x2 +1 or is a proper divisor.

We use that fact that deg(irr(α,Q)) = [Q(α) : Q] since it is the degree
[Q(α) : Q] which we shall determine.
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We have [Q(
√
2) : Q] = 2 and [Q(

√
3) : Q] = 2 where both are distinct

extension fields of Q.

We should note first that Q(
√
2) ∩Q(

√
3) = Q. Why?

Well if
√
2 ∈ Q(

√
3) for example, then

√
2 = a + b

√
3 for a, b ∈ Q.

If b = 0 then this implies
√
2 = a which is impossible since a ∈ Q.

And if a = 0 then
√
2 = b

√
3 which means b =

√

2
√

3
which is also

impossible since b ∈ Q.

So 2 = (a2 + 3b2) + (2ab
√
3) so that

√
3 = 2−(a2+3b2)

2ab which is impossible

since
√
3 6∈ Q, whereas the right hand side is in Q of course.

In general no element c + d
√
2 ∈ Q(

√
3) either.
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This implies then that Q(
√
3,
√
2) is an extension field of both Q(

√
3) and

Q(
√
2), which we can diagram:

Q(
√
3,
√
2)

rr
rr
rr
rr
rr

▲▲
▲▲

▲▲
▲▲

▲▲

Q(
√
3)

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

Q(
√
2)

qq
qq
qq
qq
qq
qq

Q

where [Q(
√
3,
√
2) : Q(

√
3)] = 2 and [Q(

√
3,
√
2) : Q(

√
2)] = 2 so

[Q(
√
3,
√
2) : Q] = 4 which can be verfied independently since

{1,
√
2,
√
3,
√
2
√
3 =

√
6} is a basis for Q(

√
3,
√
2) over Q.
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i.e. Q(
√
3,
√
2) = Q(

√
3)(

√
2) = {a + b

√
2 | a, b ∈ Q(

√
3)} so that

a + b
√
2 = (c + d

√
3) + (e + f

√
3)
√
2 = c + d

√
3 + e

√
2 + f

√
6

i.e. a linear combination of {1,
√
2,
√
3,
√
2
√
3 =

√
6}.

What we shall show (to finish the argument) is that
Q(

√
3 +

√
2) = Q(

√
3,
√
2) which means that irr(

√
3 +

√
2,Q) must be

degree 4 and therefore equal to f (x) = x4 − 10x2 + 1.
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To show Q(
√
3 +

√
2) = Q(

√
3,
√
2) is actually relatively easy.

Consider
1√

3 +
√
2
=

1√
3 +

√
2

√
3−

√
2√

3−
√
2
=

√
3−

√
2

which is slightly unexpected, but odd relations like this are quite common
when one deals with radical expressions.

The point is Q(
√
3 +

√
2) contains

√
3−

√
2 which means it contains

√
3 +

√
2 + (

√
3−

√
2) = 2

√
3 and

√
3 +

√
2− (

√
3−

√
2) = 2

√
2

and therefore
√
2 and

√
3 independently.
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Thus Q(
√
3,
√
2) ⊆ Q(

√
3 +

√
2), and since Q(

√
3 +

√
2) ⊆ Q(

√
3,
√
2)

they must be equal.

Thus [Q(
√
3 +

√
2) : Q] = 4 = deg(x4 − 10x2 + 1) and so x4 − 10x + 1

must equal irr(
√
3 +

√
2,Q) since

deg(irr(
√
3 +

√
2,Q)) = [Q(

√
3 +

√
2) : Q] = 4

and irr(
√
3 +

√
2,Q)|x4 − 10x2 + 1.
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Theorem

If E is a finite extension of F then E is an algebraic extension of F .

PROOF: First we recall that E being algebraic over F means that all
elements of E are roots of polynomials in F [x ].
So since E is finite over F then [E : F ] = n for some fixed integer n ≥ 1.
If β ∈ E is a non-zero element, then consider the set
S = {1 = β0, β, β2, βn−1, βn} which contains n+ 1 elements.
By basic linear algebra, the largest linearly independent set in a vector
space of dimension n has n elements, so therefore an n+1 element set like
S must be linearly dependent and so there is a linear dependence relation

cnβ
n + · · · + c1β + c0 = 0 ci ∈ F

ergo for f (x) = cnx
n + · · ·+ c1x + c0 ∈ F [x ] we have f (β) = 0 and so β is

algebraic over F . .
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The converse of this is false.

For example E = Q(
√
2,
√
3,
√
5, . . . ), namely the field obtained by

adjoining
√
p for all primes p, is algebraic over Q but is definitely not a

finite extension of F = Q.
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Recall that for finite groups, LaGrange’s theorem was an immensely

ubiquitous and useful result that one uses frequently in proving different
facts about groups.

Indeed, one of the first results one showed was that all groups of order p
are cyclic, and thus unique.

In particular, we had the fact that for K ≤ H ≤ G one has
[G : K ] = [G : H][H : K ] for a (finite) group G with subgroups H and K .

In particular, if for example [G : K ] = p for p prime that either [G : H] = 1
and [H : K ] = p or vice/versa.

In this same spirit we have the following fact about the degree [E : F ] of a
field extension E/F .
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Theorem

Let K be a finite extension of E and E a finite extension of F then K is a

finite extension of F , and in fact, [K : E ][E : F ] = [K : F ].

PROOF: The proof of this is, more or less, a linear algebra argument.

So we have that F ⊆ E ⊆ K , where say [K : E ] = n and [E : F ] = m, so
suppose X = {x1, . . . , xn} is a basis for K over E and Y = {y1, . . . , ym} is
a basis for E over F .

We wish to show that YX = {yjxi | j = 1, . . . ,m; i = 1, . . . , n; } is a basis
for K over F .
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The main challenge is to keep track of the ’bookkeeping’.

Let v ∈ K with v = c1x1 + c2x2 + · · · + cnxn, expressed as an E -linear
combination of the basis elements in X , that is, each ci ∈ E .

And since each ci ∈ E then ci = di1y1 + di2y2 + · · ·+ dimym for
coefficients dij ∈ F , which yields

v =(d11y1 + d12y2 + · · ·+ d1mym)x1+

(d21y1 + d22y2 + · · ·+ d2mym)x2+

...

(dn1y1 + dn2y2 + · · · + dnmym)xn
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PROOF (continued)
But this means

v =d11y1x1 + d12y2x1 + · · · + d1mymx1+

d21y1x2 + d22y2x2 + · · · + d2mymx2+

...

dn1y1xn + dn2y2xn + · · · + dnmymxn

which implies that YX spans K as a vector space over F .

And by letting v = 0, one can, using the linear independence of X over E
and the linear independence of E over F deduce that YX is linearly
independent over F , and so YX is a basis of K over F .

Moreover, we deduce that [K : F ] = |YX | = |Y | · |X | = [K : E ][E : F ],
and that K therefore is obviously a finite extension of F .
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One extremely simple consequence of this fact is the following.

Proposition

There is no field properly contained between R and C.

Proof.

If R ⊆ E ⊆ C then [C : E ][E : R] = [C : R].

But since [C : R] = 2 then either [C : E ] = 1 or [E : R] = 1 and if
[K : F ] = 1 for K an extension field of F , it must be that K = F .

Thus either E = C or E = R.
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And, more generally, if [E : F ] = p for p a prime then there is no
intermediate field K between F and E as then [E : K ][K : F ] = p so that
either [E : K ] = 1 or [K : F ] = 1.

The degree formula is also used to determine the possible degrees of
intermediate fields in general.
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