MA542 Lecture

Timothy Kohl

Boston University

March 21, 2025

It's an interesting exercise to compute $irr(\alpha, F)$ for a given α .

For example, let
$$lpha=\sqrt{2}+\sqrt{3}$$
, what is $\mathit{irr}(lpha,\mathbb{Q})$?

If we start by squaring α we get

$$\alpha^2 = 2 + 2\sqrt{2}\sqrt{3} + 3$$
$$= 5 + 2\sqrt{6}$$

and so $\alpha^2 - 5 = 2\sqrt{6}$ so $(\alpha^2 - 5)^2 = 24$ so that $\alpha^4 - 10\alpha^2 + 25 = 24$ and so $\alpha^4 - 10\alpha^2 + 1 = 0$ so α is a root of $f(x) = x^4 - 10x^2 + 1$

As it turns out, this is $irr(\alpha, \mathbb{Q})$ but the difficulty is in proving that $x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Q}[x]$, but we shall find a nice, slightly indirect, way of proving it is, by using the idea of the dimension of an algebraic extension like $\mathbb{Q}(\alpha)$ over \mathbb{Q} .

So for α an algebraic element over F we have that

$$\{f(x) \in F[x] \mid f(\alpha) = 0\} = \langle irr(\alpha, F) \rangle$$

and therefore

$$F(\alpha) \cong F[x]/\langle irr(\alpha, F) \rangle$$

where, if $deg(irr(\alpha, F)) = n$ means that

$$F(\alpha) = \{c_{n-1}\alpha^{n-1} + \cdots + c_1\alpha + c_0 \mid c_i \in F\}$$

meaning that $\dim_F(F(\alpha)) = n$, in that $F(\alpha)$ is an *F*-vector space with basis

$$\{1, \alpha, \dots, \alpha^{n-1}\}$$

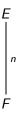
Let's explore the dimension idea a bit more.

Definition

Let *E* be an extension field of *F*. We say that *E* has degree *n* over *F*, and write [E : F] = n if *E* has dimension *n* when viewed as a vector space over *F*. If [E : F] is finite then we call *E* a finite extension of *F*, otherwise *E* is an

infinite extension.

and sometimes we indicate the degree in a diagram like this:



For example

- $[\mathbb{Q}(i) : \mathbb{Q}] = 2$
- $[\mathbb{C}:\mathbb{R}]=2$
- $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$
- $[\mathbb{Q}(\pi):\mathbb{Q}]$ is infinite

and in general, if α is algebraic over F and $deg(irr(\alpha, F)) = n$ then $[F(\alpha) : F] = n$.

Also, comparing this to the last example in the list, $[\mathbb{Q}(\pi) : \mathbb{Q}]$, above points to an interesting and important fact about algebraic extensions.

We showed that if $\alpha = \sqrt{3} + \sqrt{2}$ then $f(\alpha) = 0$ for $f(x) = x^4 - 10x^2 + 1$.

And since $irr(\alpha, \mathbb{Q})$ generates the ideal of all polynomials with α as a root, we must have $irr(\alpha, \mathbb{Q})|x^4 - 10x^2 + 1$.

So the question is whether $irr(\alpha, \mathbb{Q}) = x^4 - 10x^2 + 1$ or is a proper divisor.

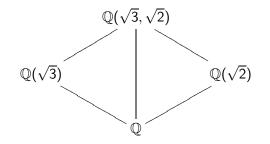
We use that fact that $deg(irr(\alpha, \mathbb{Q})) = [\mathbb{Q}(\alpha) : \mathbb{Q}]$ since it is the degree $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ which we shall determine.

We have $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$ and $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 2$ where both are distinct extension fields of \mathbb{Q} .

We should note first that $\mathbb{Q}(\sqrt{2}) \cap \mathbb{Q}(\sqrt{3}) = \mathbb{Q}$. Why?

Well if $\sqrt{2} \in \mathbb{Q}(\sqrt{3})$ for example, then $\sqrt{2} = a + b\sqrt{3}$ for $a, b \in \mathbb{Q}$. If b = 0 then this implies $\sqrt{2} = a$ which is impossible since $a \in \mathbb{Q}$. And if a = 0 then $\sqrt{2} = b\sqrt{3}$ which means $b = \frac{\sqrt{2}}{\sqrt{3}}$ which is also impossible since $b \in \mathbb{Q}$.

So $2 = (a^2 + 3b^2) + (2ab\sqrt{3})$ so that $\sqrt{3} = \frac{2 - (a^2 + 3b^2)}{2ab}$ which is impossible since $\sqrt{3} \notin \mathbb{Q}$, whereas the right hand side *is* in \mathbb{Q} of course. In general no element $c + d\sqrt{2} \in \mathbb{Q}(\sqrt{3})$ either. This implies then that $\mathbb{Q}(\sqrt{3}, \sqrt{2})$ is an extension field of *both* $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{2})$, which we can diagram:



where $[\mathbb{Q}(\sqrt{3},\sqrt{2}):\mathbb{Q}(\sqrt{3})] = 2$ and $[\mathbb{Q}(\sqrt{3},\sqrt{2}):\mathbb{Q}(\sqrt{2})] = 2$ so $[\mathbb{Q}(\sqrt{3},\sqrt{2}):\mathbb{Q}] = 4$ which can be verifed independently since $\{1,\sqrt{2},\sqrt{3},\sqrt{2}\sqrt{3}=\sqrt{6}\}$ is a basis for $\mathbb{Q}(\sqrt{3},\sqrt{2})$ over \mathbb{Q} .

i.e.
$$\mathbb{Q}(\sqrt{3}, \sqrt{2}) = \mathbb{Q}(\sqrt{3})(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}(\sqrt{3})\}$$
 so that
 $a + b\sqrt{2} = (c + d\sqrt{3}) + (e + f\sqrt{3})\sqrt{2} = c + d\sqrt{3} + e\sqrt{2} + f\sqrt{6}$

i.e. a linear combination of $\{1, \sqrt{2}, \sqrt{3}, \sqrt{2}\sqrt{3} = \sqrt{6}\}.$

What we shall show (to finish the argument) is that $\mathbb{Q}(\sqrt{3} + \sqrt{2}) = \mathbb{Q}(\sqrt{3}, \sqrt{2})$ which means that $irr(\sqrt{3} + \sqrt{2}, \mathbb{Q})$ must be degree 4 and therefore equal to $f(x) = x^4 - 10x^2 + 1$.

To show $\mathbb{Q}(\sqrt{3} + \sqrt{2}) = \mathbb{Q}(\sqrt{3}, \sqrt{2})$ is actually relatively easy.

Consider

$$\frac{1}{\sqrt{3}+\sqrt{2}} = \frac{1}{\sqrt{3}+\sqrt{2}} \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \sqrt{3}-\sqrt{2}$$

which is slightly unexpected, but odd relations like this are quite common when one deals with radical expressions.

The point is $\mathbb{Q}(\sqrt{3}+\sqrt{2})$ contains $\sqrt{3}-\sqrt{2}$ which means it contains

$$\sqrt{3} + \sqrt{2} + (\sqrt{3} - \sqrt{2}) = 2\sqrt{3}$$
 and $\sqrt{3} + \sqrt{2} - (\sqrt{3} - \sqrt{2}) = 2\sqrt{2}$

and therefore $\sqrt{2}$ and $\sqrt{3}$ independently.

Thus $\mathbb{Q}(\sqrt{3}, \sqrt{2}) \subseteq \mathbb{Q}(\sqrt{3} + \sqrt{2})$, and since $\mathbb{Q}(\sqrt{3} + \sqrt{2}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{2})$ they must be equal.

Thus $[\mathbb{Q}(\sqrt{3} + \sqrt{2}) : \mathbb{Q}] = 4 = deg(x^4 - 10x^2 + 1)$ and so $x^4 - 10x + 1$ must equal $irr(\sqrt{3} + \sqrt{2}, \mathbb{Q})$ since

$$deg(irr(\sqrt{3}+\sqrt{2},\mathbb{Q})) = [\mathbb{Q}(\sqrt{3}+\sqrt{2}):\mathbb{Q}] = 4$$

and $irr(\sqrt{3} + \sqrt{2}, \mathbb{Q})|x^4 - 10x^2 + 1$.

Theorem

If E is a finite extension of F then E is an algebraic extension of F.

PROOF: First we recall that *E* being algebraic over *F* means that *all* elements of *E* are roots of polynomials in *F*[*x*]. So since *E* is finite over *F* then [E : F] = n for some fixed integer $n \ge 1$. If $\beta \in E$ is a non-zero element, then consider the set $S = \{1 = \beta^0, \beta, \beta^2, \beta^{n-1}, \beta^n\}$ which contains n + 1 elements. By basic linear algebra, the largest linearly independent set in a vector space of dimension *n* has *n* elements, so therefore an n + 1 element set like *S* must be linearly *dependent* and so there is a linear dependence relation

$$c_n\beta^n+\cdots+c_1\beta+c_0=0\ c_i\in F$$

ergo for $f(x) = c_n x^n + \cdots + c_1 x + c_0 \in F[x]$ we have $f(\beta) = 0$ and so β is algebraic over F.

The converse of this is false.

For example $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, ...)$, namely the field obtained by adjoining \sqrt{p} for all primes p, is algebraic over \mathbb{Q} but is definitely not a finite extension of $F = \mathbb{Q}$.

Recall that for finite groups, LaGrange's theorem was an **immensely** ubiquitous and useful result that one uses frequently in proving different facts about groups.

Indeed, one of the first results one showed was that all groups of order p are cyclic, and thus unique.

In particular, we had the fact that for $K \le H \le G$ one has [G:K] = [G:H][H:K] for a (finite) group G with subgroups H and K.

In particular, if for example [G : K] = p for p prime that either [G : H] = 1and [H : K] = p or vice/versa.

In this same spirit we have the following fact about the degree [E : F] of a field extension E/F.

Theorem

Let K be a finite extension of E and E a finite extension of F then K is a finite extension of F, and in fact, [K : E][E : F] = [K : F].

PROOF: The proof of this is, more or less, a linear algebra argument.

So we have that $F \subseteq E \subseteq K$, where say [K : E] = n and [E : F] = m, so suppose $X = \{x_1, \ldots, x_n\}$ is a basis for K over E and $Y = \{y_1, \ldots, y_m\}$ is a basis for E over F.

We wish to show that $YX = \{y_j x_i \mid j = 1, ..., m; i = 1, ..., n; \}$ is a basis for K over F.

The main challenge is to keep track of the 'bookkeeping'.

Let $v \in K$ with $v = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, expressed as an *E*-linear combination of the basis elements in *X*, that is, each $c_i \in E$.

And since each $c_i \in E$ then $c_i = d_{i1}y_1 + d_{i2}y_2 + \cdots + d_{im}y_m$ for coefficients $d_{ij} \in F$, which yields

$$v = (d_{11}y_1 + d_{12}y_2 + \dots + d_{1m}y_m)x_1 + (d_{21}y_1 + d_{22}y_2 + \dots + d_{2m}y_m)x_2 + \vdots \\ (d_{n1}y_1 + d_{n2}y_2 + \dots + d_{nm}y_m)x_n$$

PROOF (continued) But this means

$$v = d_{11}\mathbf{y}_{1}\mathbf{x}_{1} + d_{12}\mathbf{y}_{2}\mathbf{x}_{1} + \dots + d_{1m}\mathbf{y}_{m}\mathbf{x}_{1} + d_{21}\mathbf{y}_{1}\mathbf{x}_{2} + d_{22}\mathbf{y}_{2}\mathbf{x}_{2} + \dots + d_{2m}\mathbf{y}_{m}\mathbf{x}_{2} + \vdots$$

$$\vdots$$

$$d_{n1}\mathbf{y}_{1}\mathbf{x}_{n} + d_{n2}\mathbf{y}_{2}\mathbf{x}_{n} + \dots + d_{nm}\mathbf{y}_{m}\mathbf{x}_{n}$$

which implies that YX spans K as a vector space over F.

And by letting v = 0, one can, using the linear independence of X over E and the linear independence of E over F deduce that YX is linearly independent over F, and so YX is a basis of K over F.

Moreover, we deduce that $[K : F] = |YX| = |Y| \cdot |X| = [K : E][E : F]$, and that K therefore is obviously a finite extension of F.

One *extremely* simple consequence of this fact is the following.

Proposition

There is no field properly contained between \mathbb{R} and \mathbb{C} .

Proof.

If
$$\mathbb{R} \subseteq E \subseteq \mathbb{C}$$
 then $[\mathbb{C} : E][E : \mathbb{R}] = [\mathbb{C} : \mathbb{R}]$.

But since $[\mathbb{C} : \mathbb{R}] = 2$ then either $[\mathbb{C} : E] = 1$ or $[E : \mathbb{R}] = 1$ and if [K : F] = 1 for K an extension field of F, it must be that K = F.

Thus either $E = \mathbb{C}$ or $E = \mathbb{R}$.

And, more generally, if [E : F] = p for p a prime then there is no intermediate field K between F and E as then [E : K][K : F] = p so that either [E : K] = 1 or [K : F] = 1.

The degree formula is also used to determine the possible degrees of intermediate fields in general.