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Let’s consider another splitting field.

Let f (x) = x4 − 2 ∈ Q[x ], and observe that the roots are ± 4
√
2,±i

4
√
2 and

so any splitting field must contain 4
√
2 and i , so if E is a (the) splitting

field for f (x) over Q then E is contained in Q(i , 4
√
2), where a Q basis is

{1, 4
√
2,

4
√
2
2
,

4
√
2
3
, i , i

4
√
2, i

4
√
2
2
, i

4
√
2
3}

so [Q(i , 4
√
2) : Q] = 8 and thus [Q(i , 4

√
2) : E ][E : Q] = 8.

Now, since Q(i , 4
√
2) ⊇ E ⊇ Q then [E : Q] = 1, 2, 4,or 8.

But since 4
√
2 ∈ E then [E : Q] ≥ [Q( 4

√
2) : Q] = 4 and since i 6∈ Q( 4

√
2)

then E properly contains Q( 4
√
2) so in fact [E : Q] = 8 which implies that

E = Q(i , 4
√
2).
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Here is a another example; let’s prove Q(21/2, 21/3) = Q(21/6).

First note that (21/6)3 = 21/2 and (21/6)2 = 21/3, so Q(21/6) contains both
Q(21/2) and Q(21/3) and [Q(21/6) : Q] = 6 since {1, 21/6, 22/6, . . . , 25/6} is a
basis, and so

[Q(21/6) : Q(21/2, 21/3)][Q(21/2, 21/3) : Q] = [Q(21/6) : Q] = 6

But now we can subdivide this further since obviously Q(21/2, 21/3) contains
Q(21/2) so

[Q(21/6) : Q(21/2, 21/3)][Q(21/2, 21/3) : Q(21/2)][Q(21/2) : Q] = [Q(21/6) : Q]

where [Q(21/2 : Q] = 2 of course, so

[Q(21/6) : Q(21/2, 21/3)][Q(21/2, 21/3) : Q(21/2)] = 3

so [Q(21/2, 21/3) : Q(21/2)] is 1 or 3, so why can’t it be 1?

i.e. Is it possible that 21/3 ∈ Q(21/2)?
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No, and we shall show more generally that Q(21/2) ∩Q(21/3) = Q.

First, since [Q(21/2) : Q] = 2 and [Q(21/3) : Q] = 3 then

[Q(21/2) : Q(21/2) ∩Q(21/3)][Q(21/2) ∩Q(21/3) : Q] = [Q(21/2) : Q] = 2

[Q(21/3) : Q(21/2) ∩Q(21/3)][Q(21/2) ∩Q(21/3) : Q] = [Q(21/3) : Q] = 3

so [Q(21/2) ∩Q(21/3) : Q] is a divisor of 2 and 3, so it’s 1.

As such, [Q(21/2, 21/3) : Q(21/2)] = 3 and so [Q(21/6) : Q(21/2, 21/3)] = 1
and so Q(21/6) = Q(21/2, 21/3).
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Primitive Element Theorem

We’ve seen, for example, that Q(
√
2,
√
3) = Q(

√
2 +

√
3) and so one

wonders if this is always the case.

That is, for α, β algebraic over F , does there exist an element γ such that
F (α, β) = F (γ), where now F (γ) is what we call a simple extension
(generated by a single alebraic element) so that a basis consists of powers
of γ, namely {1, γ, . . . , γn−1} where [F (α, β) : F ] = [F (γ) : F ] = n.

If so, we call γ a primitive element.

We note that, in the Q(
√
2,
√
3) = Q(

√
2 +

√
3) case we obtained the

primitive element
√
2 +

√
3 by simply adding together the

√
2 and

√
3.

Does this work in general? almost...
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Theorem

If char(F ) = 0 or F is a finite field, and α, β are algebraic over F then

there exists a primitive element γ so that F (α, β) = F (γ).

PROOF: (Sketch) If F is a finite field, then for α, β algebraic over F , one
has that E = F (α, β) is finite as well, and one can show that, in fact,
E ∗ = E − {0} is a cyclic group under multiplication.

This means that there is a γ ∈ E ∗ such that all non-zero elements of E are
powers of γ, which means F (γ) ⊇ E , but since obviously F (γ) ⊆ E we get
that E = F (γ).
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PROOF (continued)
The proof for when char(F ) = 0 can be found in the classic book by van
der Waerden.

The key fact (which we proved earlier) is that if char(F ) = 0 then any
irreducible polynomial in F [x ] has no repeated roots.

As a result γ = α+ λβ is a primitive element for F (α, β) (i.e.
F (α, β) = F (γ)) for all but finitely many λ ∈ F .

And indeed, frequently λ = 1 works, i.e. F (α, β) = F (α+ β) generally.

Note also, that this generalizes to field extensions of the form
F (α1, α2, . . . , αm) (for α1, . . . , αm algebraic over F ) in that these also
have primitive elements γ such that F (α1, α2, . . . , αm) = F (γ).
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Let’s take a look at another example, namely the field Q( 3
√
2, ζ3) for

ζ3 =
−1+

√
−3

2 which is the splitting field for x3 − 2 ∈ Q[x ].

First, we make a small adjustment, namely we observe that since

ζ3 =
−1+

√
−3

2 then Q(ζ3) = Q(
√
−3) and so Q( 3

√
2, ζ3) = Q( 3

√
2,
√
−3).
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We claim that Q( 3
√
2,
√
−3) = Q( 3

√
2 +

√
−3).

First, note that {1, 3
√
2, 3
√
2
2
,
√
−3,

√
−3 3

√
2,
√
−3 3

√
2
2} is a basis for

Q( 3
√
2,
√
−3) over Q.

We will, for notational convenience, denote this set {v1, v2, v3, v4, v5, v6}.
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One can show, by foiling things out that for γ = 3
√
2 +

√
−3 one has:

γ0 = v1

γ1 = v2 + v4

γ2 = −3v1 + v3 + 2v5

γ3 = 2v1 − 9v2 − 3v4 + 3v6

γ4 = 9v1 + 2v2 − 18v3 + 8v4 − 12v5

γ5 = −60v1 + 45v2 + 2v3 + 9v4 + 10v5 − 30v6

and we can show that these linear combinations of the {vi} are a linearly independent set
since the matrix

















1 0 0 0 0 0
0 1 0 1 0 0
−3 0 1 0 2 0
2 −9 0 3 0 3
9 2 −18 8 −12 0

−60 45 2 9 10 −30

















row reduces to the identity.
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So this shows that {1, γ1, . . . , γ5} is also a basis of Q( 3
√
2,
√
−3) and so

Q( 3
√
2,
√
−3) = Q( 3

√
2 +

√
−3).

What we can also prove (albeit with some amount of computation!) is
that 3

√
2 +

√
−3 is a root of

p(x) = x6 + 9x4 − 4x3 + 27x2 + 36X + 31

but the question is whether p(x) = irr( 3
√
2 +

√
−3,Q).
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So we can ask, for γ = 3
√
2 +

√
−3, is γ the root of a quadratic

x2 + ax + b? If it were then we would have

(−3v1 + v3 + 2v5) + a(v2 + v4) + bv1 = 0

namely (−3 + b)v1 + av2 + v3 + av4 + 2v5 = 0 which is impossible since
v1, . . . , v5 belong to the basis so they are linearly independent.
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Similarly, γ is not the root of a cubic x3 + ax2 + bx + c , nor of any
quadratic, or quintic.
We derived what the powers of {γ0, . . . , γ5} look like as linear
combinations of {v1, . . . , v6}.

We can show that γ6 = −23v1 − 90v2 + 135v3 − 120v4 + 54v5 + 12v6
which we write as a linear combination of {γ0, . . . , γ5} in that

γ0 = v1

γ1 = v2 + v4

γ2 = −3v1 + v3 + 2v5

γ3 = 2v1 − 9v2 − 3v4 + 3v6

γ4 = 9v1 + 2v2 − 18v3 + 8v4 − 12v5

γ5 = −60v1 + 45v2 + 2v3 + 9v4 + 10v5 − 30v6

and we find that γ6 = −9γ4 + 4γ3 − 27γ2 − 36γ − 31γ0 i.e. p(γ) = 0.
So irr(γ,Q) = p(x) = x6 + 9x4 − 4x3 + 27x2 + 36X + 31.
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Thus

Q(
3
√
2, ζ3) = Q(

3
√
2,
√
−3) = Q(

3
√
2 +

√
−3) ∼= Q[x ]/〈p(x)〉

where p(x) = x6 + 9x4 − 4x3 + 27x2 + 36X + 31 = irr( 3
√
2 +

√
−3,Q).

Timothy Kohl (Boston University) MA542 Lecture March 24, 2025 14 / 17



Algebraic Extensions of Algebraic Extensions

Theorem

If K is algebraic over E and E is algebraic over F then K is algebraic over

F .

PROOF: Let α ∈ K then p(α) = 0 for p(x) = bnx
n + · · ·+ b0 ∈ E [x ] an

irreducible polynomial.

So, we have that the bi ∈ E where E is algebraic over F , so consider the
following set of extensions of F .
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PROOF (continued)

F0 = F (b0)

F1 = F0(b1) = F (b0, b1)

...

Fn−1 = Fn−2(bn−1)

Fn = Fn−1(bn) = F (b0, b1, . . . , bn)

and since each bi ∈ E (which is algebraic over F ) we have that [F0 : F ],
[F1 : F0],. . . ,[Fn : Fn−1] are all finite.

Moreover b0 ∈ F0, b0, b1 ∈ F1,. . . ,bn, bn−1, . . . , b0 ∈ Fn.
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PROOF (continued)
So p(x) = bnx

n + bn−1x
n−1 + · · ·+ b1x + b0 must be in Fn[x ] and α being

a root of p(x) means that α is algebraic over Fn so [Fn(α) : Fn] is finite.

But now,
[Fn(α) : F ] = [Fn(α) : Fn][Fn : Fn−1][Fn−1 : Fn−2] · · · [F1 : F0][F0 : F ]
which is a finite product of finite values and is therefore finite.

i.e. α belongs to a field Fn(α) which is of finite degree over F (and
therefore an algebraic extension of F ) so α must be algebraic over F .
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