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Galois Groups

Last time, we introduced the concept of Galois group of an extension.

Definition

Let E be an extension field of F . The Galois Group of E over F , denoted
Gal(E/F ) is the set of automorphisms φ : E → E such that for c ∈ F , one
has φ(c) = c .
And for a subgroup H ≤ Gal(E/F ) the fixed field
EH = {x ∈ E | σ(x) = x for all σ ∈ H} which is a field which is
intermediate between E and F . (depending on H of course).

And as mentioned last time, when F = Q any automorphism of E fixes
F = Q, but when F is larger, one needs to check.
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Let’s consider the extension E = Q(
√
3,
√
5)/Q, and we begin with the

basis of E over Q.

As Q(
√
3)/Q has basis

{1,
√
3}

and Q(
√
5)/Q has basis

{1,
√
5}

then as Q(
√
3,
√
5) contains both, and Q(

√
3) ∩Q(

√
5) = Q then the

following 4 element set is a basis:

{1,
√
3,
√
5,
√
3
√
5 =

√
15}

and so any automorphism is determined by how it acts on these basis
’vectors’.
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Given the basis {1,
√
3,
√
5,
√
15} and φ ∈ Gal(E/Q) then obviously

φ(1) = 1.

Moreover, since
√
3
2
= 3 and

√
5
2
= 5 then φ(

√
3)2 = φ(3) = 3 and

φ(
√
5)2 = φ(5) = 5

i.e. the roots of x2 − 3 must be sent to other roots of x2 − 3 and similarly
the roots of x2 − 5 must be sent to other roots of x2 − 5.

As such φ(
√
3) = ±

√
3 and φ(

√
5) = ±

√
5, and we note that we have two

choices for φ(
√
3) and two choices for φ(

√
5).

We note also, that φ(
√
15) = φ(

√
3
√
5) = φ(

√
3)φ(

√
5) which means

φ(
√
15) is determined by φ(

√
3) and φ(

√
5).

Timothy Kohl (Boston University) MA542 Lecture March 31, 2025 4 / 18



So, for a typical element a + b
√
3 + c

√
5 + d

√
15 ∈ E (where

a, b, c , d ∈ Q), we have

φ(a + b
√
3 + c

√
5 + d

√
15) = a+ bφ(

√
3) + cφ(

√
5) + dφ(

√
15)

where, again φ(
√
15) = φ(

√
3)φ(

√
5).

So let’s determine the elements of G = Gal(E/Q).
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Define σ3 : E → E by

σ3(
√
3) = −

√
3

σ3(
√
5) =

√
5

i.e. σ3 fixes
√
5, which means also that σ3(

√
15) = (−

√
3)
√
5 = −

√
15.

Similarly, define σ5 : E → E by

σ5(
√
5) = −

√
5

σ5(
√
3) =

√
3

i.e. σ5 fixes
√
3 and also that σ5(

√
15) = −

√
15.
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We have the identity automorphism (always) which fixes every element of
E , and as σ3 and σ5 are automorphisms, so is their composition σ3 ◦ σ5
where

σ3(σ5(
√
3)) = σ3(

√
3) = −

√
3

σ3(σ5(
√
5)) = σ3(−

√
5) = −σ3(

√
5) = −

√
5

σ3(σ5(
√
15)) = −(−

√
15) =

√
15

So the composition does something a bit different to the particular
’radical’ in that it does not send it to is negative.

Let’s see how these automorphisms act globally.
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We can show that these are distinct automorphisms:

I (a + b
√
3 + c

√
5 + d

√
15) = a+ b

√
3 + c

√
5 + d

√
15

σ3(a + b
√
3 + c

√
5 + d

√
15) = a + bσ3(

√
3) + cσ3(

√
5) + dσ3(

√
15)

= a− b
√
3 + c

√
5− d

√
15

σ5(a + b
√
3 + c

√
5 + d

√
15) = a + bσ5(

√
3) + cσ5(

√
5) + dσ5(

√
15)

= a+ b
√
3− c

√
5− d

√
15

(σ3 ◦ σ5)(a + b
√
3 + c

√
5 + d

√
15) = a− b

√
3− c

√
5 + d

√
15
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As to whether these are all the elements of the Galois group, we again
point out that any automorphism is determined by what happens to

√
3

and
√
5, so the Galois group at least contains {I , σ3, σ5, σ3 ◦ σ5}.

Again, since the Galois group is a group, it must be closed, so if it
contains σ3 and σ5, it contains σ3 ◦ σ5 which, as we’ve just seen, is a
distinct automorphism itself.

What about the composition σ5 ◦ σ3?
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By direct computation we have

(σ5 ◦ σ3)(a + b
√
3 + c

√
5 + d

√
15) = σ5(σ3(a + b

√
3 + c

√
5 + d

√
15))

= σ5(a − b
√
3 + c

√
5− d

√
15))

= a − b
√
3− c

√
5 + d

√
15

and so we see that σ5 ◦ σ3 = σ3 ◦ σ5.

And, of course, σ3 ◦ I = I ◦ σ3 = σ3 and σ5 ◦ I = I ◦ σ5 = σ5, and
obviously I ◦ I = I .
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Also, since σ3(σ3(
√
3)) = σ3(−

√
3) = −σ3(

√
3) = −(−

√
3) =

√
3 we

have that
σ3 ◦ σ3 = I and σ5 ◦ σ5 = I

which means σ2
3 = I and σ2

5 = I , and since σ3 and σ5 commute, we have
that (σ3 ◦ σ5)2 = I as well.

So we have that G = Gal(E/Q) = {I , σ3, σ5, σ3 ◦ σ5} ∼= Z2 × Z2.

That is, it is isomorphic to the so-called Klein 4-group V .
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Now, let’s consider the fixed fields of the different subgroups of G .

Since G = {I , σ3, σ5, σ3 ◦ σ5}, where all non-identity elements have order
2, the (proper) subgroups are

H3 = {I , σ3}
H5 = {I , σ5}
H15 = {I , σ5 ◦ σ3}

and if E = Q(
√
3,
√
5) then EH3

, for example, is the subfield fixed by the
identity and σ3.
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Now I fixes all of E and if

x = a + b
√
3 + c

√
5 + d

√
15

then σ3(x) = x implies b = 0 and d = 0. Why?

Well σ3(
√
15) = −

√
15 since

√
15 =

√
3
√
5.

So EH3
= {a + c

√
5 | a, c ∈ Q} = Q(

√
5).
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Similarly, for
H5 = {I , σ5}

we note that since

σ5(
√
5) = −

√
5

σ5(
√
3) =

√
3

σ5(
√
15) = −

√
15

then we find that for

x = a + b
√
3 + c

√
5 + d

√
15

one has σ5(x) = x only if c = 0 and d = 0, so

EH5
= {a + b

√
3} = Q(

√
3)

and similarly, for H15 = {I , σ5 ◦ σ3} one can show that

EH15
= {a + d

√
15} = Q(

√
15)
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For completeness sake, we note two relatively obvious facts:

EI = E and EG = Q

and what we end up with is a correspondence between subgroups of G and
subfields of E (that contain the base field Q) which we can diagram.
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We start with the ’lattice of subgroups of G ’

G

④④
④④
④④
④④

❈❈
❈❈

❈❈
❈❈

H5

❈❈
❈❈

❈❈
❈❈

❈
H15 H3

④④
④④
④④
④④
④

I

and we can take each subgroup H ≤ G , and put in its place the corresponding fixed field EH

Q

qq
qq
qq
qq
qq
q

▼▼
▼▼

▼▼
▼▼

▼▼
▼

Q(
√
3)

▲▲
▲▲

▲▲
▲▲

▲▲
Q(

√
15) Q(

√
5)

rr
rr
rr
rr
rr

Q(
√
3,
√
5)

which looks a bit odd since the ’bigger’ or ’top level’ field Q(
√
3,
√
5) is on the bottom, while

the base field Q is on top.
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This ’inversion’ is actually not that surprising.

If, for example, H1 ≤ H2 ≤ G where G = Gal(E/F ) then for x ∈ EH2
we

have that σ(x) = x for all σ ∈ H2, which includes all the elements of H1

and so x ∈ EH1
automatically.

That is,
H1 ≤ H2 ↔ EH2

⊆ EH1

which, again, makes sense since the smaller the subgroup of G the more it
will fix.

(i.e. An element fixed by 2 automorphisms may not necessarily be fixed by
3 automorphisms.)
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If for a subgroup H ≤ G (where G = Gal(E/F )) we define Fix(H) = EH

then this gives a correspondence

{subgroups of G} Fix→ {subfields of E that contain F}

which makes one wonder if there is a correspondence in the other

direction?

(And also, is the map Fix one-to-one, or onto?)

We will explore this using the example we just worked out, next time.
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