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Fundamental Theorem of Galois Theory

Let F be a perfect field and let E be a splitting field over F of some polynomial in F [x ].

The mapping from the set of subfields of E containing F to the set of subgroups of Gal(E/F )
given by K 7→ Gal(E/K ) is a 1-1 correspondence.

Similarly, the mapping from subgroups of Gal(E/F ) to sub-fields, given by H 7→ EH = Fix(H)
is a 1-1 correspondence.

Furthermore for any intermediate field F ⊆ K ⊆ E :

(1) [E : K ] = |Gal(E/K )| and [K : F ] = [Gal(E/F ) : Gal(E/K )]
(2) K = EGal(E/K)

(3) If H is a subgroup of Gal(E/F ) then H = Gal(E/EH).
(4) If K is the splitting field of some polynomial in F [x ] then Gal(E/K ) is a normal subgroup
of Gal(E/F ) and Gal(K/F ) ∼= Gal(E/F )/Gal(E/K ).
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Before we can approach the proof of the main theorem, we need a number
of foundational facts about splitting fields.

Lemma

Let F be a field and p(x) ∈ F [x ] be irreducible over F , and let α be a zero
of p(x) in some extension of F . If φ : F → F ′ is an isomorphism of fields
and β is a zero of φ(p(x)) ∈ F ′[x ] in some extension of F ′ then there is an
isomorphism from F (α) → F ′(β) that agrees with φ on F , and maps α to
β.
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PROOF:
First, note that if p(x) is irreducible in F [x ] then φ(p(x)) is irreducible in
F ′[x ] and so we have an isomorphism

F (α)
τ
→ F [x ]/〈p(x)〉

φ̄
→ F ′[x ]/〈φ(p(x))〉

σ
→ F ′(β)

where φ̄ is the map f (x) + 〈p(x)〉 7→ φ(f (x)) + 〈φ(p(x))〉, where again
φ : F → F ′ is a given isomorphism.
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PROOF: (continued)
So with τ : F (α) → F [x ]/〈p(x)〉 and σ : F ′[x ]/〈φ(p(x))〉 → F ′(β) we
have that

ψ = σ ◦ φ̄ ◦ τ : F (α) → F ′(β)

is an isomorphism

F (α)
τ
//

▼▼
▼▼

▼▼
▼▼

▼▼
▼

F [x ]/〈p(x)〉
φ̄

// F ′[x ]/〈φ(p(x))〉
σ

// F ′(β)

♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

F
φ

// F ′

such that ψ(c) = φ(c) for all c ∈ F .

F (α)
ψ

// F ′(β)

F
φ

// F ′
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The principal consequence of this is what is termed the ’isomorphism
extension theorem’.

Theorem

Let φ be an isomorphism from a field F to a field F ′ and let f (x) ∈ F [x ].
If E is a splitting field of f (x) over F and E ′ is a splitting field for φ(f (x))
over F ′ then there is an isomorphism ψ : E → E ′ such that ψ(c) = φ(c)
for c ∈ F .

E
ψ

// E ′

F
φ

// F ′

Proof.

Use induction on n = deg(f (x)) together with the previous lemma.
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So with the above theorem:

E
ψ

// E ′

F
φ

// F ′

if F = F ′ with φ = Id then we deduce that any two splitting fields of f (x)
over F are isomorphic!

E
ψ

//

❄❄
❄❄

❄❄
❄❄

E ′

⑦⑦
⑦⑦
⑦⑦
⑦⑦

F

However, we shall use this result again later on to deduce a different
important fact.
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Theorem

Let p(x) ∈ F [x ] be an irreducible polynomial with splitting field E/F and
let β ∈ E be such that g(β) = 0 for some g(x) ∈ F [x ].

If β̃ is another root of g(x) (in some extension field Ẽ/E) then, in fact,
β̃ ∈ E.
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PROOF: Since E is the splitting field for p(x), then if α1, . . . , αn are the
roots of p(x) then E = F (α1, . . . , αn).

Now let g(x) ∈ F [x ] have the root β ∈ E , then without loss of generality,
we can assume that g(x) is irreducible.

Let Ẽ ⊇ E be the splitting field for g(x) which contains the other root β̃.

By earlier work, there is a unique isomorphism σ : F (β) → F (β̃) with
σ(β) = β̃ and σ(x) = x for x ∈ F .

So now E is the splitting field for p(x) over F (β) and
E (β̃) = F (α1, . . . , αn, β̃) is a splitting field for p(x) over F (β̃)

So one can extend the isomorphism σ : F (β) → F (β̃) to an isomorphism
τ : E = E (β) → E (β̃) where τ(β) = β̃.
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But now τ extends σ which is the identity on F so τ is the identity on F
too.

Thus τ permutes {α1, . . . , αn} since it must take a root of p(x) to
another root of p(x).

Since β ∈ E = F (α1, . . . , αn) then β = h(α1, . . . , αn) for some polynomial
h(x1, . . . , xn) ∈ F [x1, . . . , xn].

Then
β̃ = τ(β) = τ(h(α1, . . . , αn)) = h(τ(α1), . . . , τ(αn))

where now τ(αi ) ∈ E so h(τ(α1), . . . , τ(αn)) ∈ E as well.
i.e. β̃ ∈ E after all.
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This phenomenon is given the following definition.

Definition

An extension E/F is called a normal extension if for each β ∈ E all the
roots of irr(β,F ) lie in E as well.

As such, for Galois theory, we are interested in separable, normal
extensions E/F .

Now consider E/F a splitting field for some p(x) ∈ F [x ].
What we wish to show is that:

σ(a) = a for all σ ∈ Gal(E/F ) iff a ∈ F

[E : F ] = |Gal(E/F )|.
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Once these facts are established, the rest of the fundamental theorem of
Galois theory will follow.

And although we are studying splitting fields of the form
E = F (α1, . . . , αn) we shall make extensive use of the primitive element
theorem which means that E = F (α1, . . . , αn) = F (γ) for a ’primitive
element’ γ ∈ E .

The advantage of this is that the basis of F (γ) is simply {1, γ, . . . , γn−1}
where [F (γ) : F ] = n.

This allows us to simplify and streamline the different technical facts
which make up the fundamental theorem.

Throughout this discussion and all that follows, we will assume all fields
are perfect.
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Theorem

If E is a splitting field for some f (x) ∈ F [x ] then |Gal(E/F )| = [E : F ].

PROOF: Let γ ∈ E be a primitive element, so that E = F (γ) and let
p(x) = irr(γ,F ).

If {γ1, . . . , γn} are all the distinct roots of p(x) (where say γ = γ1) then
these all lie in E since E is a splitting field for a polynomial so it contains
the roots of p(x) = irr(γ,F ), but since E = F (γ) then E is the splitting
field of p(x) = irr(γ,F ) itself.

Moreover, if we consider any of the other roots γi where
qi(x) = irr(γi ,F ), then since I = {g(x) ∈ F [x ] | g(γi ) = 0} = 〈qi(x)〉 and
p(x) ∈ I we have that qi (x) | p(x), but both p(x) and qi(x) are irreducible
so they must be associates, however since p(x) and qi (x) are monic, they
must, in fact, be equal.

As such F (γ1) = F (γi) for i = 1, . . . , n.
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PROOF: (continued) And since F (γ1) = F (γi ) then certainly
F (γ1) ∼= F (γi ) for each γi ∈ S = {γ1, . . . , γn}.

Therefore we may define isomorphisms σi : F (γ1) → F (γi ) induced by
letting σi (γ1) = γi and σi(x) = x for x ∈ F .

But as F (γi ) = E for each γi ∈ S then these σi ∈ Gal(E/F ), so
|Gal(E/F )| ≥ |S | = n.

So Gal(E/F ) contains {σ1, . . . , σn} and if τ ∈ Gal(E/F ) then
τ(γ1) = τ(γ) is some other root of irr(γ,F ), but this means τ(γ1) ∈ S so
τ = σi for some i .

As such |Gal(E/F )| = n exactly.
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